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Abstract

Accurate and efficient simulations will significantly re-
duce the cost and the risk in the design process for various
applications in accelerator design. We improved capabil-
ity of the Argonne-developed high-fidelity wakefield sim-
ulation code, NekCEM, by upgrading pre-setup and com-
munication subroutines for high-performance simulations
beyond petascale. We present a detailed study of parallel
performance of NekCEM on the IBM Blue Gene/P at Ar-
gonne. We demonstrate strong scaling up to P=131,072
cores using up to more than 1.1 billion grid points with
the total number of elements up to E=273,000 and N=15
which gives 75% efficiency at 8,530 grid points per core
compared to the base case of P=16,384 cores.

INTRODUCTION

During the past decade, discontinuous Galerkin (DG)
methods have emerged as a powerful algorithmic tool for
the numerical solution of PDEs and led to a dramatic ex-
pansion for applications based on electromagnetics, acous-
tics, elasticity, shallow water, plasma physics, gas dy-
namics, and flow problems. For time-dependent, wave-
dominated problems, the DG method reflects the under-
lying dynamics more flexibly than does the continuous
Galerkin method, by carefully designing the numerical flux
to ensure stability.

It is well known that high-order methods such as spec-
tral, spectal element, and spectral element discontinu-
ous Galerkin (SEDG) methods converge exponentially for
smooth solutions with a faster rate of convergence than for
any fixed-order method. The spectral rate of convergence
of the SEDG method in NekCEM enables a converged so-
lution with a minimum 5 grid points per wavelength, with
minimal numerical dispersion after a long time integra-
tion [1, 2]. One can achieve engineering-level accuracy,
approximately 1e-3∼1e-5, by using high-order approxima-
tion N>10, using 6–8 grid points per wavelength.

Another important feature of a high-order scheme is
that the number of degrees of freedom to obtain a given
accuracy also decreases as the order of the approxima-
tion grows. The motivation to consider high-order SEDG
methods can be summarized as follows: fewer grid points
per wavelength required to achieve a given accuracy; effi-
ciency, with CPU time depending on the degrees of free-
dom, not the order of approximation and geometric flexi-
bility with body-conforming meshes.
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Our solution approach based on the DG framework
solves the Maxwell’s equations for wakefield calcula-
tions [6, 7]. The computational domain Ω is decomposed
into nonoverlapping hexahedral elements Ωe such that Ω =
∪E
e=1Ω

e. In the DG framework, the Maxwell equations are
written in a conservation form by defining a flux function
F as in q [8] and a weak formulation is obtained by multi-
plying a test function φ to the the governing equation and
integrating it by parts twice:(
Q
∂q

∂t
+∇ · F (q)− S, φ

)
Ωe

= (n̂ · [F − F ∗], φ)∂Ωe (1)

where we define Q = diag{μ, μ, μ, ε, ε, ε}, the field vector q
= [H,E]T , the flux F (q) = [FH , FE ]

T with FH = −ei×E
and FE = ei×H for the electric field E and magnetic field
H , and the source term S = [SH , SE] with SH = (0, 0, 0)T

and SE = (0, 0, J)T . The current source J is defined for
a Gaussian beam as in [6]. The numerical flux F ∗ is cho-
sen as defined in [8]. A local solution qN on each Ωe can
be defined as qN (x̃, t) =

∑n
j=0 qj(t)Lj(x̃) where qj(t) is

the solution at n grid points x̃j on Ωe, and Lj(x̃) is the
three-dimensional Legendre Lagrange interpolation poly-
nomial of degree N associated with n = E(N +1)3 nodes
[1]. The local discontinuous test function is chosen to be
φ = Li(x̃) and the Gauss-Lobatto quadrature is applied
for the spatial integration. The N th-order tensor-product
brick elements are mapped to body-fitted coordinates, with
weakly imposed boundary conditions. Such a grid basis
forms a local diagonal mass matrix, resulting in no cost
for inversion. For the time advancing, the code currently
supports the five-stage, fourth-order Runge-Kutta and ex-
ponential time integration methods.

We performed wakefield calculations for an electron
bunch length of 1 cm and demonstrate the wakepoten-
tial using five times larger grid spacings compared to
the second-order finite-difference time-domain (FDTD)

Figure 1: Wakepotential for a 9-cell TESLA cavity.
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case [9]. Figure 1 shows a good agreement between those
methods for a 9-cell TESLA cavity in [6].

SOFTWARE DEVELOPMENT

NekCEM is open source and available at [3] for easy
access to the current version. The package has a number
of examples for testing the convergence and performance
of the code for different problem configurations in elec-
tromagnetics. Current capabilities include wakefield and
wakepotential calculations, waveguides, and electric po-
tential calculations. NekCEM is written in Fortran and C.
The code uses the core infrastructure of the incompressible
Navier-Stokes solver Nek5000 [4], awarded the Gordon
Bell prize in 1999. NekCEM uses the distributed-memory
message-passing interface (MPI) programming model and
the single-program, multidata (SPMD) model so that each
processor independently executes a copy of the same pro-
gram on distinct subsets of data.

NekCEM has an instruction for the following three tasks
that are performed consecutively at run time: presetup,
solver, and checkpointing. A general description on the
code is summarized as follows. Presetup includes initial-
ization of processors, setting compile-time data sizes, read-
ing run-time parameters and global mesh data from input
files, distributing mesh data to each processor, and assign-
ing numbering for nodal points and coordinates for a ge-
ometry. Solver involves the SEDG scheme and time itera-
tions. Depending on the applications, a Poisson solve to ob-
tain the initial field, some auxiliary differential quations, or
postprocessing routines are additional. Checkpointing gen-
erates output files for the global field data computed from
the solver; these files can be used for restarting. Several
options are currently available with five different parallel
I/O approaches [5].

NekCEM has two input data files providing the infor-
mation on global mesh (*.rea) data and global mapping
(*.map) for vertices including processor distribution for
each element. For simplicity, data files are kept in global
format so that users are not required to deal with mesh
partition before compile/runs with easier management for
many different mesh configurations. Input files are auto-
generated from meshing tools such as prex and genmap [4],
which are included in the NekCEM package. Data files
are read at run time, so it is important to save CPU cycles
during this procedure before the actual solver runs. Read-
ing the global data for a mesh takes from 7.5 seconds for
557 million grid points to 28 seconds for 2.2 billion grid
points, with E=136K and 546K elements on P=32,768
and 131,072 cores of BG/P, respectively. Similarily, read-
ing the global data for vertex mapping takes 2.6 seconds
for 557 million grid points and 11 seconds 2.2 billion grid
points with E=136K and 546K elements on P=32,768 and
131,072 cores on BG/P, respectively.

For the communication kernel for exchanging the val-
ues at the interfaces between neighboring elements, we
use the general-purpose utility gather-scatter kernel [10],

gs(), following the methodology by Fox et. al. in
1988, which enables significant improvements in scal-
ability. The gs() kernel is for parallel matrix-vector
products with a particularly lightweight interface. In a
setup phase, gs handle is invoked by call gs setup

(gs handle,glo num,nf,nekcomm,P), where glo num

is a local list of nf integers containing a global iden-
tifier for each entry. For repeated entries in glo num

(locally or on other processors), call gs op fields

(gs handle,u,nf,nf stride,1,1,0) returns the sum
of the corresponding elements of u. With this strategy,
NekCEM requires ≈ 0.5 seconds for gs setup and ≈ 0.02
seconds for gs op fields for nf=236 million grid points
on the faces with actual total grid points of n=474 millions
with E=274K elements on 65,536 cores on BG/P.

Parallel I/O is a critical component for proactively deal-
ing with unexpected failures as well as for visualizing sim-
ulation tasks. NekCEM initially used the traditional 1
file POSIX I/O per processor (1PFPP) approach in which
every processor has to write its own file output. With
that approach, performance becomes severely limited when
shared storage is accessed by hundreds of thousands pro-
cessors simultaneously, generating huge overheads from
excessive metadata traffic, and disk block locking. Effi-
cient parallel I/O algorithms are necessary. Several I/O ap-
proaches has been developed for NekCEM [5], that utilize
the MPI-IO libraries, demonstrating the I/O performance
of NekCEM in weak scaling for write bandwidth. A 100×
improvement in CPU time over the traditional 1PFPP ap-
proach for output file sizes up to 156 GB on up to 65,536
cores on the Argonne BG/P is shown in [5]. NekCEM uses
a VTK legacy format for output files that can be directly
read by postprocessing tools for visualization using Par-
aView or VisIt.

PERFORMANCE

We demonstrate parallel performance and scalability of
NekCEM for the key algorithms in NekCEM using the
number of elements E=136K and E=273K with the poly-
nomial approximation orders N=5 and N=15, resulting in a
total of 29 million to 1.1 billion grid points. In Figures 2-3,
we observe that the efficiency and the speedup increase as
the number of grid points per core increases. Specically,
NekCEM achieves 75% epsciency on 131,072 cores for
n/P=8,530 (still not a large amount) grid points per core,
compared to a base case on 16,384 cores for n/P=68,250
grid points per core. Even with an unrealistically small
number of grid points per core n/P=224, NekCEM achieves
58% epsciency on 131,072 cores, compared to a base case
on 16,384 cores for n/P=1,793 grid points per core. CPU
time per time step is d 0.13 seconds on 131K cores for the
case of E=272K with 1.1 billion grid points. In Table 1, the
detailed efficiencies for the case of E=273K with N =15
are demonstrated.

Figure 3 demonstrates performance in TFLOPS, show-
ing approximately 10% of peak performance on BG/P.
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Figure 2: Efficiency on different problem sizes.
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Figure 3: Speedup on different problem sizes.

Our future work includes further enhancement of NekCEM
performance with double-hammer intensive coding. Cur-
rently, NekCEM uses an MPI programming interface for
parallel algorithms. We will also expand this to a hy-
brid (MPI/shared-memory) programming approach. These
and other advanced approaches will dramatically enhance
NekCEM’s capabilities for petascale and exascale simula-
tions.

Table 1: Parallel efficiency with E=273,000, N=15, the to-
tal number of grid points n=E(N + 1)3 after running 100
timesteps for the different numbers of cores with the num-
ber of grid points per core n/P . Eff denotes the efficiency.

Proc (P ) n/P CPU (sec) Ideal(sec) Eff
16,384 68,250 1.9130 1.9130 –
32,768 34,125 1.0610 0.9565 0.96
65,536 17,063 0.6388 0.4783 0.87
131,072 8,531 0.4146 0.2391 0.72

Figure 4: Performance in TFLOPS.
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