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Abstract

Efficient and accurate space-charge calculations are es-
sential for the design of high-brightness charged particle
sources. Space-charge calculations in the General Particle
Tracer (GPT) code make use of an efficient multigrid Pois-
son solver developed for non-equidistant meshes at Ro-
stock University. GPT uses aggressive mesh-adaptation
with highly non-equidistant spacing to speed up calcula-
tion time, where the mesh line positions are based upon
the projected charge density. Here we present a new mesh-
ing scheme where the solution of an intermediate step in
the multigrid algorithm is used to define optimal mesh line
positions. An analytical test case and comparison with
a molecular dynamics calculation of an ultrafast electron
diffraction experiment demonstrate the capabilities of this
new algorithm in the GPT code.

INTRODUCTION

The design of charged particle accelerators and beam-
lines heavily relies on numerical simulations. When non-
linear space-charge effects, path-length differences and
non-linear optics are significant, the favorite design method
is solving the relativistic equations of motion of a large
number of sample (macro) particles through the electro-
magnetic fields of the set-up. A major complication is that
for high-brightness beams also mutual Coulomb interac-
tions, known as space charge forces, need to be taken into
account.

Several methods exist to solve the space-charge forces,
ranging from brute force O(N2) to highly sophisticated
meshing techniques. The design of a suitable space-charge
model is further complicated by the fact that different appli-
cations require different levels of accuracy. In most cases
stochastic effects are negligible, and in that case Particle-
In-Cell (PIC), where Poisson’s equation is solved in the co-
moving frame, is the method of choice. Typically the basis
of PIC is an FFT, but this has the disadvantage that it re-
quires an equidistant mesh and this is wasteful in terms of
CPU and memory requirements. For this reason, the PIC
module of GPT uses an non-equidistant mesh in combina-
tion with the MOEVE Poisson solver [1] that is designed
to handle such meshes.
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PARTICLE-MESH MODEL IN GPT

In the tracking code GPT several space charge models
are implemented [4]. The 3D model we consider here is
based on the particle-mesh method (see [3] and citations
therein). Hereby the bunch is modeled as a certain distri-
bution of macro particles. All fields are calculated in the
electrostatic approximation in the rest frame of the bunch,
implicitly assuming only a few percent energy spread.

After the transformation into the rest frame a mesh is
constructed and the charge of the particles is assigned to
the mesh points. Now, the potential ϕ can be obtained from
Poisson’s equation given by

−Δϕ =
�

ε0
in Ω ⊂ R

3,

ϕ = 0 on ∂Ω1,
∂ϕ

∂n
+

1
r
ϕ = 0 on ∂Ω2,

(1)

where � denotes the space charge distribution, ε0 the di-
electric constant and r the distance between the centre of
the bunch and the boundary. Usually, the domain Ω is a
rectangular box constructed around the bunch. On the sur-
face ∂Ω = ∂Ω1 ∪ ∂Ω2 (∂Ω1 ∩ ∂Ω2 = ∅) perfectly con-
ducting boundaries (∂Ω1) or open boundaries (∂Ω2) can
be applied.

For the solution of the Poisson equation we applied a dis-
cretization with second order finite differences. This leads
to a linear system of equations of the form Lhuh = fh,
where uh denotes the vector of the unknown values of the
potential and fh the vector of the given space charge den-
sity at the grid points. The step size h indicates a certain
refinement level and the operator Lh is the discretization of
the Laplacian.

ADAPTIVE MESHING

The adaptive GPT mesh (first in release 2.7) is an adap-
tive discretization that allocates the mesh lines dynamically
due to the charge density in the bunch [4]. The number of
mesh lines is chosen according to the number and the distri-
bution of the particles, respectively. Efficient space charge
calculations can be performed with the MOEVE Poisson
solver that has been constructed especially for such non-
equidistant meshes [1]. The adaptive GPT mesh is highly
reliable but the construction is very complex. For exam-
ple it has to be ensured that neighboring step sizes do not
differ more than a certain factor in order to ensure the con-
vergence of the multigrid Poisson solver [3].
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The Self-Adaptive Multigrid Mesh

Recently, a new approach for the adaptive discretization
for space charge computations has been implemented in
GPT. The self-adaptive multigrid algorithm is based on an
extended τ -criterion. The main idea is to start with a rela-
tively coarse grid and to refine it step by step according to a
certain criterion. The application of the τ -criterion together
with the Poisson solver of MOEVE was introduced in GPT
and discussed in [2]. The disadvantage of this ‘plain’ τ -
criterion is that it does not work well for very long or very
short bunches, because it can not be decided if different
discretizations of the coordinate directions are necessary.

The adaptive multigrid method based on the τ -criterion
was introduced in [5] with the following notations. The
step sizes h and 2h refer to the step sizes on the fine and
the next coarser grid (usually with double mesh size), re-
spectively. The operators I2h

h and ̂I2h
h denote different re-

striction operators. In our implementation the injection was
chosen for ̂I2h

h and the full weighting restriction for I2h
h .

The τ -criterion is based on the so-called (h,2h) relative
truncation error τ2h

h with respect to the restriction operators
I2h
h and ̂I2h

h . It is defined by τ2h
h := L2h

̂I2h
h uh−I2h

h Lhuh .
More details can be found in [5].

The values τ2h
h (i, j, k) are now available at the mesh

points (i, j, k) with i = 0, . . . , Nx − 1, j = 0, . . . , Ny − 1
and k = 0, . . . , Nz − 1, where Nx, Ny and Nz are the
numbers of mesh lines in x-, y- and z-direction, respec-
tively. For the extended τ -criterion we introduce the dif-
ferences of the values τ2h

h for neighboring mesh points
Dτ2h

h = (Dxτ2h
h , Dyτ

2h
h , Dzτ

2h
h ). Here, Dxτ2h

h =
τ2h
h (i + 1, j, k) − τ2h

h (i, j, k) with i = 0, . . . , Nx − 2 de-
notes the differences in x-direction, Dy and Dz are defined
analogously. The self-adaptive multigrid scheme with the
extended τ -criterion is given as follows:

Algorithm: Self-Adaptive Multigrid

1. Start on a relatively coarse mesh.

2. Perform a few multigrid cycles on Lhuh = fh.

3. Compute τ2h
h and Dτ2h

h .

4. Add mesh lines locally in x-direction, if
|Dxτ2h

h | > ε1 and
a · max(|Dxτ2h

h |) > max(|Dyτ2h
h |),

a · max(|Dxτ2h
h |) > max(|Dzτ

2h
h |) with a > 1.

Analogously, add mesh lines locally in y- and z-
direction

5. Proceed from 2. as long as |Dτ2h
h | > ε2.

Main advantages of this approach are that the generated
hierarchy of meshes now matches the hierarchy of meshes
of multigrid and the values τ2h

h are provided directly by the
multigrid algorithm.

RESULTS

Analytical Test Case

One of the most stringent tests in our suite of analytical
benchmarks is the field-error of a hard-edged cylinder with
an aspect ratio varying over 6 orders of magnitude. Typical
rms errors are in the 10% range, as the field is almost sin-
gular near the end of bunches with extreme aspect ratios.
Nevertheless we want the code to survive these cases, with
controlled behavior regardless of the number of mesh lines
and particles. The main result of Figure 1 is that the new
code is on average about a factor of two faster. However,
from an independent test, not shown in this paper, we see
that long bunches with aspect ratios < 10−2 start to suffer
in terms of accuracy. This is currently under investigation.
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Figure 1: CPU time for the current (top line) and new (bot-
tom line) meshing scheme.

Ultrafast Electron Diffraction

Ultrafast Electron Diffraction (UED) is an emerging
technology where a sub-ps electron pulse is sent through
a sample and the diffraction pattern is recorded. The tech-
nique is very demanding in terms of beam quality, as it de-
fines the so-called coherence length. Furthermore it is very
challenging to get short pulses with sufficient charge due to
Coulomb repulsion. A promising method to produce fem-
tosecond pulses with up to about a million electrons is rf
bunch compression [6]. Here the longitudinal dynamics in
the beamline is entirely space-charge driven, and accurate
simulation tools are crucial for the design of the device.
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Figure 2: Real space distribution just before the longitudi-
nal focus of the UED setup.
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The new meshing algorithm is not yet sufficiently stable
to track through the entire device. We therefore rely on the
‘standard’ meshing of GPT to produce snap shots of the
particle distribution, and these snapshots are used to test
the new meshing algorithm. One of the most critical parts
is shown in Figure 2 obtained just before the sample where
space-charge forces are significant because the bunch is be-
ing compressed to a few femtoseconds.

Figure 3 represents the corresponding space charge cal-
culation results. A comparison is made between a full
molecular dynamics result of GPT version 3.0, the current
PIC meshing based on charge density and the new hierar-
chical meshing routine. The top plot can be considered cor-
rect, as it is based on all interactions between all particles.
The resulting granularity noise is a striking feature of this
approach, but typically these fluctuations can be neglected
and then PIC codes are just much faster. Both meshing
schemes come close to the correct result, but we must note
that the built-in routine is still slightly better in terms of ac-
curacy. The reason for that can be understood from the lon-
gitudinal meshing sequence of the new algorithm for stage
0 to 4, as shown in Figure 4. In this draconian test-case
there are small fluctuations at the finest level, giving rise to
a non-smooth longitudinal electric field.

Molecular dynamics

Current meshing

New meshing

Figure 3: GPT simulations with various space-charge mod-
els corresponding to Figure 2.

0.9332 0.9333 0.9334 0.9335 0.9336

−1

−0.5

0

0.5

1

x 10
−3

z

x

 

 

−0.15

−0.1

−0.05

0

0.9332 0.9333 0.9334 0.9335 0.9336

−1

−0.5

0

0.5

1

x 10
−3

z

x

 

 

0.9332 0.9333 0.9334 0.9335 0.9336

−1

−0.5

0

0.5

1

x 10
−3

z

x

 

 

0.9332 0.9333 0.9334 0.9335 0.9336

−1

−0.5

0

0.5

1

x 10
−3

z

x

 

 

Figure 4: Meshes with increasing density obtained with the
new algorithm for the bunch shown in Figure 2.

CONCLUSIONS AND OUTLOOK

A new meshing scheme has been implemented and
tested in the GPT code. In theory this new scheme should
be faster, easier to implement, a better match for the multi-
grid solver, and more robust. The first results have been
promising, showing an improvement in CPU time of about
a factor of 2. However, the new scheme is not yet as robust
as the ‘standard’ meshing of GPT and we also observe re-
duced accuracy for very long bunches. Nevertheless, given
the performance increase and elegance of the scheme, we
are confident that eventually the new approach will outper-
form the current version.

REFERENCES
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