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Abstract 

The single bunch selector of the Spiral2 driver uses 
high impedance travelling wave electrodes driven by fast 
pulse generators. The characteristic impedance of 100 
Ohm has been chosen to reduce the total power, but this 
non standard value requires the development of custom 
feed-through and transitions to connect the pulse 
generators and the matching load to the electrodes. The 
paper reviews the design of these devices. 

INTRODUCTION 
The single-bunch selector of the Spiral2 accelerator 

reduces the bunch repetition rate onto the experimental 
target of a factor 100 to 10000. The device is constituted 
of a static magnetic deflector and of a pulsed RF kicker 
whose fields are perfectly compensated for the selected 
bunch. All other bunches are deviated onto a beam stop 
by the magnetic field. This principle, shown in Fig. 1, 
inverts the duty cycle required for the RF kicker and uses 
constant length pulses.  

Figure 1: Principle of the inverted duty cycle single 
bunch selector. 

This solution was developed in the framework of the 
Eurisol Design Study [1] and is justified by the high 
repetition rate, high voltage, and fast transient time 
required by high intensity ion drivers.  Table 1 reports the 
values for the Spiral2 application.  

Table 1: Single Bunch Selector Requirements 

Parameter Value Units 

Repetition rate 1 MHz 

Rise and fall time 6 ns 

Pulse total length 19 ns 

Pulse max voltage 2.5  kV 

Pulser power  1 kW 

 
Table 2 gives the operating parameters for a plate 

length of 546 mm and for the different kinds of ions 

(identified by their mass to charge ratio A/q) of the 
Spiral2 driver. The difference between the beam and the 
plate voltages is due to the coverage factor of the meander 
plate, which is ~0.75. 

Table 2: Voltage Requirements for the SBS 

A/q Beam Voltage Pulse Voltage 

1 473 V 630 V 

2 792 V 1056 V 

3 1182 V 1576 V 

6  1773 V 2364 V 

 
High voltage switches being too slow and not enough 

powerful, the travelling wave solution was proposed in 
the inverted duty cycle configuration in order to reduce 
the involved RF power.  

The electromagnetic field of the RF kicker is generated 
by two pulsers of opposite sign travelling along two 
meander-shaped microstrips (beta 0.04), each one ended 
by a matching load.  

Characteristic impedance (Zc) of 100 Ohm has been 
chosen as a compromise among pulser RF power, 
meander loss, and meander feasibility.  

 
Figure 2:  Schematics of the meander feeding chains. 

As shown in Fig. 2, the signal of each generator is 
transmitted via 100 Ohm cables supplied by the pulser 
manufacturer. From the cable, the pulse travels through 
the feed-through, where the vacuum window is located, 
and a short section of transmission line before reaching 
the transition to the meander strip. A similar path is 
followed at the output to reach the matching load.   

All the feeding chain elements have been designed to 
minimize the insertion and transition loss to transfer the 
best possible pulse. CST Microwave Studio was used for 
RF simulation in both time and frequency domains and 
results of the different simulations are reported here. An 
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