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Abstract 
Concept of the 650 MHz cavities for the Project X is 

presented. Choice of the basic parameters, i.e., number of 
cells, geometrical , apertures, coupling coefficients, etc., 
is discussed. The cavity optimization criteria are 
formulated. Results of the RF design are presented for the 
cavities of both the low-energy and high-energy sections. 

INTRODUCTION 
The Project-X, a multi-MW proton source, is under 

development at Fermilab [1]. It enables a world-leading 
program in neutrino physics, and a broad suite of rare 
decay experiments. The facility is based on a 3-GeV 1-
mA CW superconducting linac [2]. In a second stage, 
about 5-9% of the H- beam is accelerated up to 8 GeV in a 
SRF pulsed linac to the Recycler/Main Injector. The main 
portion of the H- beam from the 3 GeV linac is directed to 
three different experiments.  The basic configuration of 
the 3-GeV CW linac is shown in Fig. 1.  

 

 
Figure 1: Configuration of Project X based on CW linac. 

 
The beam originates from a DC H- source and then is 

bunched and accelerated by a CW normal-conducting 
RFQ up to 2.5 MeV. From 2.5 MeV to 3 GeV the H- 

bunches are accelerated by the CW superconducting (SC) 
linac. The CW linac consists of a low-energy 325 MHz 
SRF section containing three different families of single-
spoke resonators, and two families of 650 MHz elliptical 
cavities [3].   

An initial proposal for the Project–X linac was based 
on the concept of an 8-GeV pulsed SC linac [4], where a 
9-cell, β=1 ILC-type acceleration structure was used.  
However, at the beam energy range below 3 GeV the ILC 
cavity does not work effectively, because the transit time 
factor depends strongly on beam velocity β.  The transit 
time factor dependence on β is shown in Fig. 2 for 
different numbers of cells in a cavity.  One can see that in 
order to improve the transit time factor, and thus, increase 
the accelerating gradient for given RF fields in a cavity, 
one should use cavities containing a smaller number of 
cells. Another way is to use a family of cavities with 
different geometrical β, which is impractical. If one uses a 

5–cell cavity, it gives the possibility to improve the transit 
time factor and, thus, reduce the number of cavities 
significantly.  In order to keep a reasonable cavity length, 
the same length as for an ILC cavity, and about the same 
energy gain per cavity, one should use two times lower 
frequency, or 650 MHz.   

 

 
Figure 2: Transit time factor versus a ratio of beam 
velocity β to geometrical β for different number of cells in 
a cavity, n. Geometrical β is a ratio of the cavity period to 
half-wavelength (the cavity operates in CW π-mode). 

 
The transition from the front end operating at 325 MHz 

based on single-spoke cavities [5] to the 650 MHz section 
based on elliptical cavities is chosen at the H- energy of 
~160 MeV, because for lower energy elliptical cavities are 
not efficient. It is inefficient to accelerate H- from 160 
MeV to 3 GeV using the same type of a cavity.  In order 
to achieve good acceleration efficiency, two families of 
650 MHz cavities may be used.  

Optimization was made for the transition energy 
between the two families and their geometrical betas 
assuming a linear dependence of the field enhancement 
factors versus beta [6]. Optimal geometrical betas for the 
two sections are 0.61 and 0.9, respectively.  The optimal 
transition energy is about 500 MeV, where the gain per 
cavity is equal in both sections. In Table 1 the numbers of 
cavities (C), focusing elements (FE) and cryomodules 
(CM) in each section are shown for all the sections for the 
recent version of the linac [2]. One can see that the actual 
transition energies for the section are a bit higher, because 
they are defined by optimization of longitudinal beam 
dynamics and technical requirements. (One accelerating 
unit is a cryomodule.)  

GENERAL 
The goal of the cavity shape optimization was to 

decrease the field enhancement factors (magnetic and 
electric) to improve the interaction between the beam and 
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surface processing technology may consistently provide a 
residual resistance below 5 nΩ, see [14]. Assuming an 
operating temperature of about 2K, the BCS resistance 
may be calculated from BCS theory using numerical 
algorithms (e.g., SRIMP [15]), and for 650 MHz and 
T=2K one has ~3 nΩ for BCS and, thus, ~8 nΩ total. 
Assuming medium field Q-slope at the peak field of 70 
mT is about 30% [14], that gives the target for the Q 
range of the 650 MHz cavity of ~2e10 and losses <25 
 W/cavity, or <200 W/cryomodule at the operating 
gradients of ~17 MeV/m. 

 

Table 2: Dimensions of the 650 MHz Cavities 

Dimension Beta=0.61 Beta=0.9 
Regular 

cell 
End 
cell 

Regular 
cell 

End 
cell 

r, mm 41.5 41.5 50 50 
R, mm 195 195 200.3 200.3 
L, mm 70.3 71.4 103.8 107.0 
A, mm 54 54 82.5 82.5 
B, mm 58 58 84 84.5 
a, mm 14 14 18 20 
b, mm 25 25 38 39.5 
α,° 2 2.7 5.2 7 

 

Table 3: RF Parameters of the 650 MHz Cavities 

Geometrical β 0.61 0.9 
R/Q, Ohm 378 638 
G-factor, Ohm 191 255 
Max. gain per cavity, MeV(on crest) 11.7 17.5 
Gradient, MeV/m 16.6 16.9 
Max. surf. electric field, MV/m 37.5 33.7 
Epk/Eacc 2.26 2 
Max surf. magnetic field, mT 70 63 
Bpk/Eacc, mT/(MeV/m) 4.21 3.75 
 
The feature of the linac is small beam loading and thus, 

a narrow cavity bandwidth.  The bandwidth of the 
matched β=0.9 650 MHz cavities for a gain per cavity of 
17.5 MeV, and the beam current of 1 mA is 20-25 Hz, 
which creates problems with microphonics. In order to 
fight microphonics, the following means are typically 
used:  
(i) Cavity over-coupling in order to increase the 
bandwidth; which leads to input power overhead. For the 
high-energy part of the CW linac of the Project X, 30 kW 
IOTs are supposed to be used.  Taking into account 16% 
overhead caused by losses and control requirements, it 
gives a power reserve of about 7.5 kW per cavity.  This 
reserve gives the possibility to increase the bandwidth up 
to 40 Hz, which mitigates, but does not eliminate the 
problem with microphonics.  
(ii)  Utilization of an active microphonics 
compensation using fast piezo tuners.  Practical 
experience gained at Fermilab [16] shows that this 
approach is feasible for the cavities of the Project X CW 
linac.  The work on active microphonics compensation in 
the Project X cavities is in progress . 

(iii) Increase the cavity mechanical stability versus 
He pressure fluctuations, i.e., decrease the value of df/dP 
as much as possible (f is the cavity resonance frequency, 
P is He pressure).  The cavity and He vessel mechanical 
optimization were made for the 650 MHz cavities which 
allows an expected df/dP of 6 Hz/Torr [17]. 
(iv) Decrease He pressure fluctuations, through 
careful design of the cryomodule and cryogenic system. 

Analysis shows [18,19] that HOM dampers may not be 
needed, and experience [20] shows that having HOM 
dampers can create operational problems. The cavity 
impedance dependence on the proton velocity, the spread 
of the resonance frequencies of HOMs of the cavities and 
their fluctuation caused by microphonics (which may 
exist even when the frequency of the operating mode is 
stabilized by the tuner), and the possibility to detune the 
HOM frequencies by the operating mode tuning-detuning 
[21] may allow removal of the HOM dampers in the 650 
MHz sections of the CW linac of the Project X.  
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