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Abstract

The effect of a weakly coupled periodic lattice in terms
of achieving emittance exchange between the transverse
and longitudinal directions is investigated using the gen-
eralized Courant-Snyder theory for coupled lattices.

INTRODUCTION

Recently, the concept and technique of transverse-
longitudinal emittance coupling have been proposed for ap-
plications in the Linac Coherent Light Source [1, 2] and
other free-electron lasers to reduce the transverse emit-
tance of the electron beam. Such techniques can also be
applied to the driver beams for the heavy ion fusion and
beam-driven high energy density physics, where the trans-
verse emittance budget is typically tighter than the longitu-
dinal emittance. The proposed methods consist of one or
several coupling components which completely swap the
emittances of one of the transverse directions and the lon-
gitudinal direction at the exit of the coupling components.
The complete emittance exchange is realized in one pass
through the coupling components. In the present study, we
investigate the effect of a weakly coupled periodic lattice in
terms of achieving emittance exchange between the trans-
verse and longitudinal directions. A weak coupling compo-
nent is introduced at every focusing lattice, and we would
like to determine if such a lattice can realize the function of
emittance exchange.

For simplicity, we will only study the coupling between
one of the transverse directions, the x−direction, and the
longitudinal direction, the z−direction. The focusing lat-
tice in the x−direction is a periodic FODO lattice speci-
fied by a focusing coefficient κq(s), where s is the distance
along the longitudinal direction. The longitudinal dynam-
ics is modelled by a synchrotron oscillation with a constant
synchrotron focusing coefficient κz . In every FODO lat-
tice, two small-amplitude transverse-longitudinal coupling
components are introduced. As discussed in Refs. [1, 2],
such components can be realized by a dipole mode cav-
ity, which generates a longitudinal acceleration force pro-
portional to the transverse displacement, and a transverse
acceleration force proportional to the longitudinal position
relative to the beam centroid. The coupling can be viewed
as a skew-quad between the x−direction and z−direction.
The coupling focusing strength will be represented by
κs(s).

∗Research supported by U.S. Department of Energy.

We will study the emittance dynamics from the view-
point of the beam covariance matrix

σ ≡

⎛
⎜⎜⎝

〈
x2
〉 〈xz〉 〈xpx〉 〈xpz〉

〈xz〉 〈
z2
〉 〈zpx〉 〈zpz〉

〈pxx〉 〈pxz〉
〈
p2x
〉 〈pxpz〉

〈pzx〉 〈pzz〉 〈pxpz〉
〈
p2z
〉

⎞
⎟⎟⎠ ,

where 〈〉 ≡ ∫
fbdxdzdpxdpz represents average over the

particle distribution function. After the beam propagates
through the coupled lattice, the covariance matrix is trans-
formed to

σ (s) = M(s)†σ0M(s),

where M(s) is the transfer matrix from s = 0 to s = s,
σ0 = σ(0), and M(s)† is the transpose of M(s). The
emittance dynamics in the coupled lattice is therefore com-
pletely specified by the transfer matrix M (s) .

GENERALIZED COURANT-SNYDER
THEORY AND REPRESENTATION FOR

COUPLED DYNAMICS

We will use the recently developed generalized Courant-
Snyder (CS) theory and parameterization method for cou-
pled lattices to parameterize the transfer matrix [3, 4, 5, 6,
7]. The main result of the theory is summarized as fol-
lows. The Hamiltonian for the coupled transverse dynam-
ics is given by

H = u†Au , u = (x, z, px, pz)
†
, (1)

A =

(
κ 0

0†
I

2

)
, κ =

(
κq/2 κs

κs κz/2

)
. (2)

Here, the 2 × 2 matrix κ(t) is time-dependent and sym-
metric, and I is the 2 × 2 unit matrix. The transverse and
longitudinal dynamics are coupled through the κs (t) term.
The solution of the linear coupled system corresponding to
H is given by a transfer matrix M (t) , which is a time-
dependent 4 × 4 symplectic matrix [8]. Because there are
10 free parameters for a 4 × 4 symplectic matrix, many
different mathematical parameterization schemes forM (t)
exist. Teng and Edwards [9, 10, 11] first systematically
studied the transfer matrix and derived various parameteri-
zation schemes [9], among which the “symplectic rotation
form” [10] has been adopted in lattice design and particle
tracking codes. Other possible parameterizations have also
been considered [12, 13]. The generalized Courant-Snyder
theory adopted here gives a complete description of the
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coupled transverse dynamics, and has the same structure
as the original CS theory for one degree of freedom. The
four basic components of the original CS theory that have
physical importance, i.e., the envelope equation, phase ad-
vance, transfer matrix, and the CS invariant, all have their
counterparts, with remarkably similar expressions, in the
generalized CS theory. The unique feature of the general-
ized CS theory is the non-Abelian (non-commutative) na-
ture of the theory. In the generalized theory, the envelope
functionw is generalized to an envelope matrix, and the en-
velope equation becomes a matrix envelope equation with
matrix operations that are not commutative. The gener-
alized Courant-Snyder theory gives a parameterization of
the 4D symplectic transfer matrix M [Eqs. (3)] that has the
same structure as the parameterization of the 2D symplec-
tic transfer matrix [Eq. (7)] in the original CS theory. The
transfer matrix M is given by

M (s) =SPS−1
0 , P =

(
P1 −P2

P2 P1

)
, (3)

S =

(
w† 0

w−1ẇw† w−1

)
, S−1

0 =

(
w−1†

0 0
−ẇ0 w0

)
.

(4)

In Eqs. (3) and (4), both S and P are symplectic matrices,
and w is the 2× 2 envelope matrix satisfying the envelope
matrix equation

ẅ + wκ =
(
w−1

)†
w−1

(
w−1

)†
. (5)

The P matrix is determined from the differential equation

Ṗ = Pφ̇ , φ̇ ≡
(

+0 − (w−1
)†

w−1

(
w−1

)†
w−1 0

)
,

(6)
which admits solutions of the form P =

(
P1 P2

−P2 P1

)
.

For comparison, we recall that for the uncoupled (one
degree of freedom) dynamics, the transfer matrix M (t) is
a 2× 2 symplectic matrix with following decomposition

M =

(
w 0

ẇ
1

w

)(
cosφ sinφ
− sinφ cosφ

)(
w−1

0 0
−ẇ0 w0

)
.

(7)
The envelope function w (t) here is a scalar and satisfies
the nonlinear envelope equation ẅ + κq (t)w = w−3 .

For the coupled case, we can readily show that PP † =
I, and Det (P ) = 1 from the fact that P belongs to
Sp (4, R) . Therefore,P corresponds to a rotation in the 4D
phase space, P ∈ SO (4) . In this sense, P † is the 4D non-
Abelian generalization of the 2D rotation matrix in the ex-
pression for the transfer matrix M for the original Courant-
Snyder theory, i.e., the second term on the right-hand side
of Eq. (7). Because φ̇† = −φ̇, it follows that φ̇ belongs to
the Lie algebra so (4) , i.e., φ̇ is an infinitesimal generator
of a 4D rotation. In other words, φ̇ is an “angular velocity”
in 4D space, which is equivalent to a phase advance rate in
4D space. The 4D phase advance rate φ̇ is determined from
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Figure 1: Focusing strength.
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Figure 2: Matched solution of the envelope matrix.

the 2 × 2 matrix β†−1 =
(
w−1

)†
w−1, which is remark-

ably similar to the phase advance rate β−1 = 1/w2 in the
original Courant-Snyder theory for one degree of freedom.
For both cases, the transfer maps consist of a scaling matrix
and the a rotation matrix.

As in the case of uncoupled dynamics, the transfer ma-
trix for the coupled case does not match the lattice period.
However, the transfer matrix is regular. It does not match
the lattice period simply because the phase advance is not
2π in one lattice period. There is no need to numerically
solve for the transfer matrix for many periods along the
beam path. We only need to numerically find a matched
solution of the envelope matrix in one lattice period and
then carry out the calculation of the phase advance along
the beam path from Eq. (6) to find the transfer matrix. This
is one of the practical values of the generalized CS param-
eterization for coupled dynamics. The definition of Twiss
parameters for the coupled dynamics have the same struc-
ture as the uncoupled case, β = w†w , α = −w†w′ , and
γ =

(
w†w

)−1
+ w′†w′ . All of the Twiss parameters are

periodic functions of the coupled lattice. They are fixed
once the coupled lattice is set up.

EMITTANCE DYNAMICS

We now apply the generalized CS parameterization
method to the coupled lattice between the x−direction
and the z−direction, and investigate how the emittance
and covariance matrix evolves. One of the two indepen-
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Figure 3: Emittance dynamics of εx and εz.
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Figure 4: Emittance dynamics of εxz.

dent [14] 4D emittances is typically defined as the square
root of the determinant of σ, which is a constant, i.e.,
ε4D =

√
Det[σ] = ε4D(s = 0), because Det[M ] = 1.

However, the dynamics of the determinants of submatrices
of σ can be complicated. The often studied x−emittance
and z−emittance squared are defined as the determinants
of the corresponding submatrices

ε2x ≡ Det

( 〈
x2
〉 〈xpx〉

〈xpx〉
〈
p2x
〉
)
, (8)

ε2z ≡ Det

( 〈
z2
〉 〈zpz〉

〈zpz〉
〈
p2z
〉
)
. (9)
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Figure 5: Emittance dynamics for εx0 = εz0.

As an example, we investigate the coupled lattice plotted
in Fig. 1. The matched solution of the envelope matrix w is
shown in Fig. 2. The dynamics of εx and εz are displayed in
Fig. 3 for the case where εx0 = 2 and εz0 = 1 (in arbitrary
units). As expected, the dynamics of εx and εz do not match
the lattice period, and both εx and εz vary with s. For this
case, the coupling does not induce an exchange between εx
and εz . However, this effect is partially attributed to the fact
that the definitions of εx and εz in Eqs. (8) and (9) do not
contain all of the relevant information about the emittance
for the coupled dynamics. For instance, we should also
examine the following determinant

ε2xz ≡ Det(σxz), σxz ≡
( 〈

x2
〉 〈xz〉

〈xz〉 〈
z2
〉
)
, (10)

which measures the area of the covariance ellipse of the
beam determined by eigenvalues and eigenvectors of σxz .
Because the off-diagonal terms in σxz are non-vanishing,
the ellipse is tilted. This is of course induced by the cou-
pling. In Fig. 4 the dynamics of σxz is plotted, which in-
dicates that σxz oscillates with time. But on average, εxz
decreases compared with the uncoupled case.

It can be shown [2] that if εx0 = εz0 initially, then the
coupling does not induce any exchange between εx and εz ,
and εx = εz for all time. Nevertheless, this does not mean
that εx = εx0 and εz = εz0. In Fig. 5, such a case is dis-
played. Even though εx = εz for all the time, εx and εz are
not constant. They both increase.
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