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Abstract

We study the propagation of coherent X-ray mode
through optical cavity of X-ray FEL oscillator (XFELO)
including rough grazing incidence mirror.

INTRODUCTION

Recently X-ray FELoscillator(XFELO) scheme was pro-
posed [1] as a fully (both temporally and transversally) co-
herent source of X-ray with peak brightness comparable
to, average brightness several orders of magnitude higher
than SASE. The optical cavity in XFELO, whose schematic
view is shown in Fig.1, plays an important role of propagat-
ing coherent X-ray back to undulator while giving proper
focusing in the undulator for maximum gain process and
loosing minimum power. More specifically, optical cav-
ity parameters are determined so that waists and their sizes
of X-ray and electron beam coincide for maximum gain.
Also high reflectivity crystals are used for backscattering
and grazing incidence mirrors are operated with angle of
incidence θg less than critical angle for total reflection. The
performance of optical cavity, characterized by waist fluc-
tuation and power loss can be easily disrupted by various
errors in the cavity [3]. In this paper, we focus on the the ef-
fects of mirror surface errors and simulate the propagation
of X-ray beam through the cavity.

X-RAY BEAM PROPAGATION

In this simulation we ignore the effects of crystals (to be
discussed elsewhere) and assume the cavity consists of the
grazing incidence mirrors and vacuum only. We take ini-
tial mode to be Gaussian of wavelength λ ≈ 10−10(m) and

Figure 1: An X-ray FEL oscillator with a 4-crystal cavity.

waist size w0 ≈ 1.78 × 10−5(m). The mirror under con-
sideration is parabolic mirror made of silica (SiO2) whose
refractive index n is 1− 3.17× 10−6 − i(1.87× 10−8) at
λ ≈ 10−10. The profile and PSD (power spectral density)
of surface errors is shown in Fig. 2.
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Figure 2: Although this is measurement from flat mirror,
we assume the errors closely approximate elliptic case and
treat sum of (a) and perfect elliptical surface as actual er-
rors.

We describe the propagation of optical beam in 1D by
Fourier optics. In particular, we use phase difference
method in the vicinity of the mirror where small interfer-
ence from different mirror position can be ignored. In
{x, z} coordinate where x is coordinate in transverse di-
rection and z is along propagation axis, E field transforms
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to E′ after mirror as

E′(x, x/θg) = r0A(x)e
−2ik sin θgh(x/θg)− ik

2f x2

× E(x, x/θg) (1)

where

A(x) = (1− e−|x+θgL/2|/α)(1− e−|x−θgL/2|/α)
α ≈ 250m (2)

Here r0 is (flat) Fresnel reflectivity coefficient, A(x)
smooth aperture function for finite sized mirror L ≈ 6.4×
10−2m, k spatial wave length of initial beam, h height of
mirror surface, f focal length of mirror. For the rest of the
propagation we use vacuum Fresnel-Huygens integral.

E′′(x, z) =
∫ ∞

−∞
dx′E′(x′, x′/θg)

eikρ

ρ
cosϕ (3)

Here ρ is eikonal function and ϕ is oblique angle. Com-
bining (2),(3), we have E field transform per first half-turn
as,

En+1(x, z) = (1 + g)

∫ ∞

−∞
dt′En(x

′, x′/θg)

× r0e
−2ik sin θgh(x

′/θg)A(x′)
eikρ

ρ
cosϕ

≈ (1 + g)

∫ ∞

−∞
dt′En(x

′, x′/θg)

× r0(1− 2ik sin θgh(x
′/θg))

× A(x′)
eikρ

ρ
cosϕ (4)

Here g is minimum FEL gain per pass that compensates
power loss and maintains stable mode. The first term on
the last line represents Gaussian mode propagation and the
second term its perturbation and essential in relating sur-
face error profile h to deformation of E.

SIMULATION RESULTS AND
DISCUSSION

We use MATLAB to implement Eq. 4 to our optical cav-
ity (Fig.1) in 1D case. Primary concern is power reduc-
tion while the beam goes through the mirror. In Fig.3, we
observe the incoming beam spreads out reducing the peak
amplitude by Rsimulation ≈ 0.983.

This is predicted from Eq. 4, as its Fourier transform
with qf = qi reduces to well-known result [2]

Rtheory = |r0|2e−4k2 sin θg
2σ2 ≈ 0.982 (5)

Here σ is rms size of the mirror roughness profile. The sec-
ond factor, describing (specular) power loss by roughness
is called Debye-Waller factor in analogy with solid state
physics terminology.

This indicates the power reduction with the portion of the
beam in “wing” region diffracting out of physical aperture.
The simplest way to determine the power loss per turn is to
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Figure 3: Fourier mode profile of |E| in k space at M1 (in
log scale). Red line is incoming Gaussian beam and blue
line is perturbed outgoing beam.

feed the beam with FEL gain g to compensate the loss and
maintain the profile over many passes. (We found this value
to be g ≈ 0.0085) The remaining power forms equilibrium
mode. However, there are in general wavefront distortions,
as can be inferred from Fig. 4. The mirror could have an
overall curvature error leading to an error in focal length,
modifying the Rayleigh length.

Another important effect of the roughness was observed
to be the small fluctuation of power profile and its growth
as

√
n over n passes (see Fig. 3).

This is also predicted by Eq. 4 by considering a single
small Gaussian bump as representative roughness on the
mirror.

h(x) = be−
(t/θg−x0)2

2a2 (6)

Then Eq. 4 gives an approximate power formula as

|E|2 ≈ E2
0 (1 +

4k2θ2ga
2b

L
cos { k

2L
(t− x0θg)

2}) (7)

Its fluctuation amplitude term 4E0k2θ2ga2b/L can be inter-
preted as follows: Incoming field upon bump has power
aθgE2

0 and reflected field 4bkθgaE2
0 , which diffracts out

with angle ϕ ≈ λ/(aθg). So at distance L down the op-
tical path the power is spread over the range a′ ≈ Lϕ ≈
Lλ/(aθg). Therefore conserved power is given as P ≈
4E2

0a
2k2θ2gb/L. If we now assume random distribution of

N bumps, the power after n passes would roughly be given
as

Pn ≈ √
n
4a2k2θ2gb

L
√
N

(8)

In principle, from the power profile, one could conversely
get some information about “effective” bump size a and
number N on the mirror. (a2/

√
N is determined from

Eq. 8).
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Figure 4: |E| field at M2 after n passes. We observe the
beam reaches stable mode about after n=100 (fluctuation
of the mode would keep magnifying without aperture).

CONCLUSION

In conclusion, we find low compensation factor g ∼ 0.01
shows power loss due to rough mirror is small enough and
easily can be overcome by FEL gain which ranges over
0.3 ∼ 0.4. In terms of controlling the fluctuations, large
aperture size reduces power loss but allows more fluctua-
tion to propagate. Compromise has to be made for optimal
performance.

Further factors that affect the X-ray propagation are ori-
entation misalignments of mirrors and crystals, focal length
errors and bunch timing errors. These are discussed in de-
tail elsewhere by matrix method in phase space and super-
mode theory [3], but its main results can be summarized as
follows: the orientation errors deviate optical axis of prop-
agation and the stability condition should be treated as an
eigenvalue problem. Quantitative computation shows the
angle error must not exceed 2 × 10−8. Computing tune
shift due to focal length error shows that the error should
be less than 5%. Beyond stability issue, these errors and
bunch timing errors disturb overlap of the radiation with
electron beam undermining gain process. In case of bunch
timing error, solution to supermode theory shows timing
should be kept within ∼ 50 fs (∼ 12μm).
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