
OPEN-SOURCE SOFTWARE SYSTEM FOR MULTI-AUTHOR
DOCUMENTS∗

L. Emery† , ANL, Argonne, IL 60439, USA

Abstract

An efficient means was developed to manage multi-
author documents using software components not usually
run together that are both freely available and free of cost:
Concurrent Version Software (CVS), LATEX typesetting soft-
ware, and the Unix “make” utility. Together they solve the
main problem with multi-author documents: losing track
of the “latest” version, tracking author contributions, and
a strict enforcement of document format. APS has used
this system for two large documents with about a dozen
authors each: a 2007 white paper (150 pages) on a ERL
proposal and a chapter (230 pages) of the APS Upgrade
CDR. We stress the use of LATEX because the plain-text for-
mat is amenable to version comparisons, the macro-based
system allows last-minute global format changes, and fi-
nally LATEX just looks better than Microsoft Word. Several
contributions from APS to this conference actually use this
system.

INTRODUCTION

Most of the accelerator literature consists of multi-author
documents. They could be large texts for facility construc-
tion proposals, or simply conference proceedings with two
or more authors that (actually) share the writing work.

Many editing and content changes are made in the pro-
cess of writing, thus producing many past versions of the
document, though not all worth retaining. Popular What-
You-See-Is-What-You-Get (WYSIWYG) software such as
Microsoft Word and OpenOffice have ways of tracking
changes by individual authors. The changes from the orig-
inal can be viewed in color-coded fragments, though this
may be confusing as well. When an author sends a new
version to the rest of the authors some of them may already
have made changes to the previous version, and thus need
to reconstruct a new version themselves before continuing
the editing. Finally piecing parts together after all authors
have contributed may be a confusing task. The authors may
resort to renaming of files in order to understand the order
in which the changes have been made.

In large multi-chapter documents, sections or chapters
may be the responsibility of individual authors, which is
less prone to confusion. The remaining risk is that in writ-
ing a small part of the document, a particular author may
not respect the agreed-upon format, which comprises an
extensive set of parameters: page layout, paragraph styles,

∗Work supported by the U.S. Department of Energy,Office of Sci-
ence, Office of Basic Energy Sciences, under Contract No. DE-AC02-
06CH11357.

† lemery@aps.anl.gov

fonts, font size, section header formats, table and figure
styles and captions, equations styles, citation style, bibliog-
raphy style, etc. In addition typing a backspace while edit-
ing a WYSIWYG document could change the document in
an unseen way, which has ramifications later.

Large scientific documents also have many figures, equa-
tions, tables, and references. When a new one of these are
inserted in the document, then all the following instances
must be renumbered manually, which is painstaking work
and prone to error. Twenty years of WYSIWYG word pro-
cessing development has not addressed this.

In addition, the paragraphs formed by WYSIWYG soft-
ware line-breaking algorithms are not as pleasing to the eye
of cultured readers compared to those that are profession-
ally typeset.

Thus we propose using a versioning software to resolve
the editing synchronization between authors and organize
the versions, using LATEX for the aesthetics and the auto-
matic reference numbering, and the make Unix utility to
compile the LATEX files, which is sometimes onerous, but
necessarily so. Programs LATEX, CVS and make require the
use of a command line, which should not be difficult for
scientists and engineers, who are paid to learn things.

With this system we have written two large documents
with about a dozen authors, one a 2007 white paper (150
pages) on a ERL proposal, and the other a 230-page chapter
of the APS Upgrade Conceptual Design Report (CDR).

In addition these programs are open source, meaning that
source code is available to examine freely. These program
are also free of charge. Beginners have at their disposal a
vast amount of help through the bulletin boards that many
expert users frequent. In fact after completing the APS Up-
grade CDR, we found a Wikibooks on LATEX with a section
dealing with collaborative writing [1], which was equiva-
lent to what is written here.

USING LATEX

LATEX is a formatting language that was created to typeset
aesthetically-pleasing math papers and to handle numerical
references to figures, tables and citations. It has been em-
braced by authors in many scientific fields, and instruction
manuals of various levels abound (experts should use [2]).
Many Ph.D.s have used LATEX to write their thesis. The
input file is plain text with commands that tell LATEX in a
high-level way how to format text, which can be readily
seen in the JACoW proceedings template files [3].

LATEX by default has good aesthetics, which is a good
enough reason to adopt it over Microsoft Word and
OpenOffice. Usually, the formatting doesn’t need to be ad-
justed by the author. Often a style file is provided by a

Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA THP121

Light Sources and FELs

Accel/Storage Rings 05: Synchrotron Radiation Facilities 2345 C
op

yr
ig

ht
c ○

20
11

by
PA

C
’1

1
O

C
/I

E
E

E
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

journal editor, which means the author can concentrate on
content.

The APS Upgrade CDR was assembled into a book by
joining a large chapter composed in LATEX with others com-
posed in Word. This mixture is possible since the final
chapter pdf files can be joined with pdf tools such as pdftk
[4]. Given that LATEX and Word must live together, and
that the style format management of LATEX is more flexi-
ble than Word’s, the Word formatting style is imposed on
the LATEX chapter. Luckily for us, many unorthodox styles
were encountered by outside expert LATEX users and solu-
tions were made available on the searchable Comprehen-
sive TeX Archive Network [5].

A companion program BIBTEX handles the typesetting
of bibliographies. A plain text file provides the informa-
tion, and a style file arranges the information in the final
document. Bibliography formatting differ drastically be-
tween journals, so it is important to keep the content sep-
arate from the formatting (obviously the same goes for
LATEX). In our case a bibliography style format required
by the Word-centric editors did not conform to any estab-
lished ones (BIBTEX users over the years have developed
dozens of BIBTEX style files conforming to several jour-
nals). Thus we had to customize, using instructions given
in [2], a closely matching BIBTEX style file, which was then
available for future customizations. This has proven invalu-
able as the bibliography style became more specific over
the course of the project. Such changes in Word documents
would be very time-consuming to make.

In collaborations it is important for authors to adopt con-
sistent policies in editing input text files and naming of cer-
tain things. When typing paragraphs, it is best to have sen-
tences wrap around at some column number and put a line
break at the end. This improved viewing differences be-
tween versions with tkdiff [6]. When using BIBTEX it is
recommended to use a consistent policy in creating keys,
such as Author+year+publication.

Large documents usually have a structure of chapters,
sections, subsections, and so on. It is natural therefore to
split the contents into many files, one for each section or
subsection. One should use the LATEX \input command
to read in files at appropriate places from the higher-level
section. The files should be arranged in a directory tree,
mirroring the document structure, one level for chapters
and another for sections (two levels is enough). The im-
age files for figures should be in a lower level directory
called figures, say. Depending on whether we run LATEX
or pdflatex, the image files must be in either EPS or
PDF formats, respectively. Some image-producing soft-
ware may not know how to make a EPS file. In this case
pdf files are preferred, since they retain the high resolution
of vector graphics available in EPS. An additional advan-
tage of pdflatex is that it accepts most common bitmap
formats, although these of course tend to have poor quality
compared to vector graphics.

Formatting in LATEX is done through commands that pre-
cede or enclose the text. There are many commands to

choose from to produce a basic and very readable docu-
ment. Special commands can be defined through the use of
style files (packages) that are declared at the beginning of
the file, the preamble. This area of the file can potentially
be crowded by many package declaration and special vari-
able settings. In our application some 20 or so packages
are declared along with dozens of variable assignments. To
remove the clutter, we move all of this into a new style file
and call this package as a single line in the document.

Some particular LATEX packages that were useful for
our large documents were: latexsym for special symbols,
hyperref for hyperlinks to figures and tables, fancyhdr
for the sometimes busy/unusual headers and footers re-
quired, chappg for page numbers composed of chapter and
page within chapter, longtable for tables that are longer
than one page, multirow for joining cells in a table across
rows, chapterfolder for reading of chapters and sec-
tions in a directory structure, secsty for modifying sec-
tion headers style, subfig for multiple subfigures in a fig-
ure, color for color in table cells, threeparttable for
adding tablenotes to text in tables, rotating for rotating
large figures or tables so that they fit alone in a single page,
and finally caption for arbitrary styles for captions in fig-
ures and tables.

Some of the packages were not sufficient to match for-
mat invented by the Word-centric editors, so they were
modified, renamed and placed in the CVS repository:
biblio for bibliography header modification, chngcntr
for special numbering of equations, cite for grouping of
citation numbers, bibunits for making a separate bibliog-
raphy for each chapter or section. One odd style require-
ment was to indent the first paragraph of every section,
which required package indentfirst. Last but not least
the Greek letter micron needed to conform to Microsoft’s
upright micron using the package pifont.

The above list may seem like a complicated way to meet
format requirements. However the packages are easy to
find in [5], and they are for the most part compatible with
each other. If they are not, then some editing and renaming
of style files or workarounds are necessary.

USING CVS

A version control system maintains versions of a soft-
ware project or data. The software files and data would
generally reside on a server (the repository). A user would
obtain a complete copy of the project with a client-like
checkout action. A user would then modify the local copy
of a particular file, and then issue a “commit” command to
create a new version of the file in the repository. Now, when
other users would checkout or update their copies from the
repository, the new version of the above file appears in their
local working areas. In general even if two authors would
edit the same file at the same time, the sections of the files
that are modified would be hopefully independent of each
other and not cause a problem. Otherwise one of the au-
thors would have to repeat his edits on the other’s current

THP121 Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA

2346C
op

yr
ig

ht
c ○

20
11

by
PA

C
’1

1
O

C
/I

E
E

E
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Light Sources and FELs

Accel/Storage Rings 05: Synchrotron Radiation Facilities

version.
At APS we generally use Concurrent Versions System

(CVS) as our versioning system for EPICS and other accel-
erator software. Because of our familiarity with CVS we
adopted it for versioning large multi-author documents.

For those uncomfortable with command lines, tkcvs [7]
is a GUI interface to CVS.

In versioning systems one can make comparisons be-
tween two versions using, say, the tkdiff utility.

Tagging is a way to save the version numbers of all files
in the system. This is useful when one complete a major
step in paper preparation, that is all the files are synchro-
nized at the same stage of preparation. When sending a
document to reviewers or referee, one could assign a tag
to the current version, and continue to make improvements
for future version. Also if one has to “downgrade” a paper
to fit a conference proceedings 3-page limit, one can still
tag a longer version that can be archived privately.

To summarize the workflow: 1) initial checkout (to get
a copy), 2) update copies, 3) edit copy, 4) review work,
i.e., compile to check syntax and results, and 5) commit
the changes (give a descriptive comment).

All source files for compiling LATEX must be put under
CVS including sources that are used for making EPS fig-
ures, for example, an OpenOffice drawing file. Derived
files, such as PS and PDF files don’t need to be in the repos-
itory. The LATEX and BIBTEX style files and scripts that use
them certainly must be in the repository.

The revision system Apache Subversion (svn) [8] is a
newer revision system that is meant to be a replacement
to CVS. Presently CVS does everything that we require for
publishing a multi-author document: 1) network accessi-
bility, 2) saving of all versions, 3) comparison of different
versions, and 4) tagging of milestones.

For last-minute editing of a document or proceedings
paper, having an editor as a collaborator would be very
beneficial, since the iteration process is more efficient than
passing email documents pack and forth. (For editors and
contributors who use Windows-based computers, use of a
virtual machine running Linux is an excellent way to get
access to free software and work efficiently with scientists
and engineers using the system described here.)

USING MAKEFILE

The make system is used in software engineering to com-
pile a system of code according to dependency rules de-
fined by the Makefile file written by the user. Usually this
file defines a series of compilation steps required to pro-
duce one or more final executables. The goal is to hide
from the user the complexity of running commands on the
command line. In the case of a LATEX document, the depen-
dency rules run the latex or pdflatex and the bibtex
executables to obtain the final product, the pdf file.

The file Makefile is located in the directory of the doc-
ument. Typing “make” in that directory will launch the
necessary compilation. The Makefile also includes def-

initions of macros that can be used to set the search path
of style files for latex and bibtex commands. Makefile
can also direct the execution of scripts that run bibtex on
each chapter bibliographies. Note that the Makefile must
also be stored in the CVS software repository. Finally the
make command can be programmed as a special command
in the tkcvs GUI.

For a multi-chapter or multi-section document it is of-
ten useful and time-saving to compile only a lower level
portion of the document. Thus each directory level has its
ownMakefile. This entailed writing a LATEX source file
in each directory with the same preamble as the file in the
top directory. (For compilation of whole document the “in-
cluded” chapter or section files don’t have preambles.)

OTHER ISSUES

Editors may want to compare two revisions of the full
document to make sure editing instructions have been fol-
lowed. Two pdf files may be compared using AcrobatPro
selecting the command Advanced →Compare documents.
One could also export the file in text format and run the
tkdiff command on the plain text. The best approach,
as indicated above, is for the editor to use the CVS system
directly, coupled with tkcvs.

As mentioned above, several contributions to this confer-
ence have made use of LATEX CVS, and make. A repository
structure was set up specifically for conference papers and
will be used by many accelerator scientists at APS from
here on. In contrast to previous years, when we shared
drafts via email and often had confusion and conflicts with
multiple authors changing documents at the same time, co-
authoring of papers was very smooth using this system.

One issue with submission of LATEX conference papers
and journal articles is that most do not accept BIBTEXfiles,
but require the bibliography to be embedded in the doc-
ument. Also, there are often naming conventions for the
files, including figures. We have written a simple script that
parses the LATEX document and BIBTEX output to create a
new set of files that are ready for submission.

REFERENCES

[1] A. Henningsen. http://en.wikibooks.org/wiki/

LaTeXCollaborative_Writing_of_LaTeX\

_Documents.

[2] F. Mittelbach et al. The LaTeX Companion, 2nd ed. Addison-
Wesley, 2004.

[3] Templates for Papers. http://accelconf.web.cern.ch/
accelconf/jacow/templates/templates.htm.

[4] http://www.pdflabs.com/tools/

pdftk-the-pdf-toolkit/.

[5] http://www.ctan.org/search.html#byDescription.

[6] http://sourceforge.net/projects/tkdiff/.

[7] http://www.twobarleycorns.net/tkcvs.html.

[8] http://subversion.apache.org/.

Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA THP121

Light Sources and FELs

Accel/Storage Rings 05: Synchrotron Radiation Facilities 2347 C
op

yr
ig

ht
c ○

20
11

by
PA

C
’1

1
O

C
/I

E
E

E
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

