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Abstract 
The SNS SCL is reliably operating at 0.93-GeV output 

energy with an energy reserve of 10 MeV. Field emission 
directly or indirectly (through heating of end groups) 
limits the gradients achievable in the high beta cavities in 
normal operation with the beam. One of the field 
emission sources would be surface contaminations during 
surface processing for which mild surface cleaning, if 
any, will help in reducing field emission. An R&D effort 
is in progress to develop in-situ surface processing for the 
cryomodules in the tunnel without disassembly. As the 
first attempt, in-situ plasma processing has been applied 
to the CM12 in the SNS SRF test facility after the repair 
work with a promising result. This paper will report the 
R&D status of plasma processing at the SNS. 

INTRODUCTION 
Since the initial commissioning of accelerator complex 

in 2006, the SNS has begun neutron production operation 
and beam power ramp-up has been in progress toward the 
design goal. Since the design beam power is almost an 
order of magnitude higher compared to existing neutron 
facilities, all subsystems of the SNS were designed and 
developed for substantial improvements compared to 
existing accelerators and some subsystems are first of a 
kind. Many performance and reliability aspects were 
unknown and unpredictable and it takes time to 
understand the systems as a whole and/or needs efforts for 
additional performance improvements. From the series of 
tests and operational experiences more understandings of 
systems and their limiting conditions in the pulsed mode 
are being obtained at high duty operation.  

The final output beam energy mainly depends on the 
SRF cavity gradients. Presently, eighty cavities out of 
eight-one cavities are in service and the SCL is providing 
output energy of 930 MeV with about 10-MeV energy 
reserves. Actual operating gradients are set around 85-95 
% of limiting gradients achieved at 60-Hz collective tests 
[1] for the stable operation since the machine availability 
is steeply increasing concern as a user facility. The SCL is 
providing beam acceleration for the neutron production as 
one of the most reliable systems at the present operating 
conditions.  

In operation, the stable operating gradient of the high 
beta cavities is 12.8 MV/m in average mainly due to the 
heating of the end groups by electron loadings. Major 
contribution of electron loading is field emission which 
heats up the end groups and results in partial quench and 
gas burst. The average accelerating gradients achieved 

from the existing cavities are summarized in Figure 1. 
The high-beta cavities need about 2.5 MV/m performance 
improvements to achieve 1-GeV output energy, with 30- 
to 40-MeV energy reserve for fast recovery of operation 
from unexpected long-lead down time of not only cavities 
but also related systems. 

 Figure 1: SNS cavity performance statistics. 

At SNS, in-situ processing in the tunnel has been 
identified as an important area of research to improve the 
SRF cavity performances while minimizing the machine 
operational impact and saving cost for the improvements.  

IN-SITU SURFACE PROCESSING 
As cleaning methods have been improved for the 

niobium surfaces, field emission is not a fundamental 
limiting factor to reach a theoretical limit. But field 
emission is a one of the major limiting factors in the 
operational machines especially in the high duty machines 
and results in a large scattering of cavity performances. 
The sources of field emitters are known to be material 
defects and contaminants introduced during cavity 
assembling, water dry spots, residues after high pressure 
rinsing (HPR), electro-polishing (EP) and buffered 
chemical polishing (BCP). Condensed gases and 
chemicals could form surface layers and enhance field 
emissions. By nature the locations of field emitters are 
random and statistical. Characteristics of field emitters 
would change over time and processing seems to be 
harder after an initial cavity RF conditioning depending 
on types of field emitters. 

While qualifying a cavity itself, combinations of post 
processing among HPR, EP or BCP could be applied to a 
less performing cavity. It is, however, very difficult to 
apply a conventional surface cleaning/processing after 
cavities are assembled in a cryomodule. Rebuilding a 
cryomodule for performance improvements is time-
consuming and expensive. In-situ processing is one of the 
most promising solutions for improvement of the SNS 
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