Paper | Title | Page |
---|---|---|
TUOCS1 | Energy Recovery Linacs for Light Source Applications | 761 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under DOE Contract No. DE-AC05-06OR23177. The U.S.Government retains a non-exclusive, paid-up, irrevocable, world-wide license. Energy Recovery Linacs are being considered for applications in present and future light sources. ERLs take advantage of the continuous operation of superconducting rf cavities to accelerate high average current beams with low losses. The electrons can be directed through bends, undulators, and wigglers for high brightness x ray production. They are then decelerated to low energy, recovering power so as to minimize the required rf drive and electrical draw. When this approach is coupled with advanced continuous wave injectors, very high power, ultra-short electron pulse trains of very high brightness can be achieved. This paper reviews the status of worldwide programs and discusses the technology challenges to provide such beams for photon production. |
||
![]() |
Slides TUOCS1 [9.930 MB] | |
THP171 | Demonstration of 3D Effects with High Gain and Efficiency in a UV FEL Oscillator | 2429 |
|
||
Funding: This work was supported by U.S. DOE Contract No. DE-AC05-84-ER40150, the Air Force Office of Scientific Research, DOE Basic Energy Sciences, the Office of Naval Research, and Joint Technology Office We report on the performance of a high gain UV FEL oscillator operating on an energy recovery linac at Jefferson Lab. The high brightness of the electron beam leads to both gain and efficiency that cannot be reconciled with a one-dimensional model. Three-dimensional simulations do predict the performance with reasonable precision. Gain in excess of 100% per pass and an efficiency close to 1/2NW, where NW is the number of wiggler periods, is seen. The laser mirror tuning curves currently permit operation in the wavelength range of 438 to 362 nm. Another mirror set allows operation at longer wavelengths in the red with even higher gain and efficiency. |
||
THP172 | Operation and Commissioning of the Jefferson Lab UV FEL using an SRF Driver ERL | 2432 |
|
||
Funding: Supported by the US Dept. of Energy under DoE contract number DE-AC05-060R23177. We describe the operation and commissioning of the Jefferson Lab UV FEL using a CW SRF ERL driver. Based on the same 135 MeV linear accelerator as the Jefferson Lab 10 kW IR Upgrade FEL, the UV driver ERL uses a bypass geometry to provide transverse phase space control, bunch length compression, and nonlinear aberration compensation necessitating a unique set of commissioning and operational procedures. Additionally, a novel technique to initiate lasing is described. To meet these constraints and accommodate a challenging installation schedule, we adopted a staged commissioning plan with alternating installation and operation periods. This report addresses these issues and presents operational results from on-going beam operations. |
||
THP173 | Design of the SRF Driver ERL for the Jefferson Lab UV FEL | 2435 |
|
||
Funding: Support by DoE Contract DE-AC05-060R23177. We describe the design of the SRF ERL providing the CW electron drive beam at the Jefferson Lab UV FEL. Based on the same 135 MeV linear accelerator as – and sharing portions of the recirculator with – the Jefferson Lab 10 kW IR Upgrade FEL, the UV driver ERL uses a novel bypass geometry to provide transverse phase space control, bunch length compression, and nonlinear aberration compensation (including correction of RF curvature effects) without the use of magnetic chicanes or harmonic RF. Stringent phase space requirements at the wiggler, low beam energy, high beam current, and use of a pre-existing facility and legacy hardware subject the design to numerous constraints. These are imposed not only by the need for both transverse and longitudinal phase space management, but also by the potential impact of collective phenomena (space charge, wakefields, beam break-up (BBU), and coherent synchrotron radiation (CSR)), and by interactions between the FEL and the accelerator RF system. This report addresses these issues and presents the accelerator design solution that now successfully supports FEL lasing. |
||