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Abstract 
The AC response of accelerator vacuum chambers to 

external magnetic fields when the wall thickness is 
comparable or greater than the skin depth was 
investigated. Good agreement was established between 
experimental measurements, analytical modelling and 
finite element simulations. Based on the results we 
suggest a transfer function model for electrically thick 
vacuum chambers with arbitrary transverse cross-section. 

INTRODUCTION 
EM field penetration into accelerator vacuum chambers 

and its shielding by eddy currents is a well known subject 
in accelerator physics and engineering. It is commonly 
encountered in the design of pulsed kicker magnets, 
ramped magnets, and other magnets designed to create a 
rapidly changing magnetic field inside a metallic vacuum 
chamber. Typical calculations include field attenuation, 
field rise-time, generation of (usually unwanted) 
multipole components, eddy current heat generation, etc.  

In particular, a commonly mentioned model is that of 
an electrically thin chamber with circular cross-section 
[1]. It states that for a sinusoidal excitation 
Bext(t)=B0sin(ω t) applied transversely to a beam pipe of 
radius b and wall thickness d the steady-state time 
dependence for the magnetic field penetrating the vacuum 
chamber Bint(t) is:  
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where σc is the conductivity of the chamber material. This 
corresponds to the Laplace domain transfer function 
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Note that in this model the field inside the chamber lags 
no more than 90 degrees behind the external field. 

The present work was motivated by the need to 
understand the AC magnetic (dipolar) field penetration 
into the National Synchrotron Light Source (NSLS) 
vacuum chamber, to allow for better modelling of the 
orbit feedback systems [2]. While the feedback loop 
includes many elements, such as corrector power 
supplies, electron beam, beam position monitors with 
processing electronics,  etc.,  the dynamic response of the 
(open loop) system is dominated by the eddy currents in 
the vacuum chamber. Since the dynamic response to the 
horizontal and vertical fields was different and phase

 shifts greatly exceeding 90 degrees were measured [2], a 
model based on the equations above is inadequate. This is 
not too surprising because 1) chambers don’t have 
circular symmetry and 2) they cannot be assumed 
electrically thin at high excitation frequencies. Earlier 
papers [3-4] that mention eddy current time constants for 
accelerator vacuum chambers in non-circular geometry 
derive them by an order of magnitude estimation, and 
thus don’t provide sufficient accuracy for our application.  

The goal of this work was to study the accelerator beam 
pipe response in a realistic geometry as well as to come 
up with a simple dynamic model that could quantitatively 
describe the effects observed.   

ANALYTICAL ESTIMATES 
An obvious generalization of Eq. (1) is to account for 

finite wall thickness of the vacuum chamber. For axially 
symmetric geometry the solution for a long tubular 
cylinder in a uniform transverse quasi-static magnetic 
field can be found by standard methods of classical 
electrodynamics. Eddy currents flow parallel to the 
cylinder axis, they are strongest at the outer surface, and 
decay inside the metal due to the skin effect. The field 
inside  the cylinder is uniform. The transfer function is 
given by 
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where dbpq /2 τ≡ , b stands for the inner radius, τ  is 
given by Eq. (2), I and K are the corresponding Bessel 
functions. Note that parameter qd/b is approximately the 
ratio of the wall thickness to the skin depth. When this 
parameter is small we recover the first order transfer 
function Eq. (3). In general, however, Eq. (4) has infinite 
number of poles. Their scaling with chamber thickness is 
illustrated in Fig. 1. Solid curves show exact calculation, 
while the dashed curves show asymptotic behaviour for 
vanishing thickness given by p0=−1/τ  and, for n=1,2,3,..., 
 

 )/(/ 2
0

2222
02

1 dndbnpp cn σμππ −== . (5) 
 

Apart from the factor π 2/2 the poles of Eq. (5)  
correspond to the frequencies where the skin depth is 
equal to d/n. Eq. (5) is quite accurate (see Fig. 1). Even 
for a very thick wall, d/b=1, the largest disagreement is 
less than 30%.  
A similar transfer function and pole behaviour can be 
derived for parallel plate geometry with Bext parallel to 
the(finite thickness) plates, so it is expected that the 
relationship between the dominant pole and higher 
frequency poles will be approximately the same for other 
vacuum chamber geometries as well. 

*Work supported by DOE contract number DE-AC02-98CH10886 
#boris@bnl.gov 

TH5PFP083 Proceedings of PAC09, Vancouver, BC, Canada

3398

Beam Dynamics and Electromagnetic Fields

D06 - EM Fields



 0.0 0.2 0.4 0.6 0.8 1.0

d

b

1
2

5
10
20

50
100

� pnΤ

 
 
Figure 1: Transfer function poles for a thick tubular 
cylinder. 

However, for more realistic geometries the situation is 
more complicated since the field inside a chamber 
generally depends on the transverse position and it has 
components both parallel and perpendicular to the 
external field. In other words, the response to a dipolar 
excitation generally contains higher multipoles of the 
field. For small orbit displacements it is still useful to 
introduce the dipolar response transfer function, 
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Figure 2: Thin pipe shortest time constant, Eq.(6); semi-
axis a is fixed; Bext parallel to semi-axis b.  

This function, even for electrically thin chambers, 
contains infinite number of poles (and zeros), since each 
multipole mode has an associated time constant, and all 
modes are coupled. Nevertheless, at low frequencies it 
could be significantly simplified [7], and cast into a 
single-pole form similar to Eq.(1), except the pole 
frequency is now given by   
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Here we assume symmetric chambers with respect to 
both x=0 and y=0 planes. The integral is taken around the 
transverse chamber cross-section. For instance, for 
circular chamber, y/x=tanθ, ds=b dθ, and by integration 
over the polar angle θ,  we recover Eq. (2). Note that 
expression similar to Eq. (6) follows from Eq. (16) of [5] 
in the limit of a large magnet gap. That derivation was 
done by a different method in the limit of weak skin effect 
(i.e. low frequency) for a thin chamber with mode 
coupling ignored.  

Time constants from Eq. (6) are plotted in Fig. 2. As 
the cross-section changes (left to right) from parallel 
plates parallel to Bext, to round (or square), and then to 

parallel plates perpendicular to Bext, the time constant 
changes by roughly a factor of two. For square pipe, 
τ0/τ=4/π, which  is the same as for parallel plates 
perpendicular to Bext.. 

Combining the dominant pole from Eq. (6) with the 
ones described earlier for a thick tubular cylinder (and 
n>0) we suggest the following transfer function model 
that accounts for non-circular cross-section as well as the 
wall thickness, 
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Here p0 is calculated from Eq.(6) while higher frequency  
poles are taken from the right hand side of Eq. (5), i.e. 
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applications accounting for just a few poles in Eq. (7) 
gives sufficient accuracy. This will be illustrated below. 

HALL PROBE AND ANSYS RESULTS 
The measurements presented here were a part of a 

larger task to characterize the dynamic response of the 
key elements in the NSLS orbit feedback system. Actual 
NSLS ring hardware (trim magnets, power supplies, beam 
pipe) were used. Two different types of trim magnets 
were used: an air-core magnet and an iron-frame magnet. 
Similar results have been obtained for the chamber 
response.  

The air-core magnet produces only a horizontal field. 
The iron core magnet has several sets of coils; for the 
measurements presented only the horizontal coils were 
powered. The Hall probe was oriented vertically (i.e. 
sensitive to the horizontal field) and was located at the 
center of the magnet. The transverse field profile over the 
area occupied by the pipe was measured (at DC) and field 
uniformity was found to be at ~10%.  

Frequency response measurements were done using a 
Stanford Research Systems SR785 Dynamic Signal 
Analyzer. The SR785 output was connected to the current 
programming input on a Kepco BOP20-10M Bipolar 
Power Supply operating in constant current mode. A 
calibrated Allegro A1360 Hall sensor with a 50 kHz 
bandwidth was inserted on the axis into the bore of the 
magnet.  The setup was arranged so that pipes of different 
shape and wall thicknesses could be inserted into the bore 
on the opposite side from the probe insertion.  The current 
sensing amplifier output from the supply was connected 
to input 1 on the dynamic signal analyzer and the Hall 
probe signal was connected to input 2.  Thus the phase 
and amplitude relationship between the current through 
the magnet windings and the magnetic field in the bore of 
the magnet could be analysed as a function of frequency 
for different pipe geometries. The photo of the setup is 
shown in Fig. 3.  

Round Pipe Results 
To check our assumptions and the measurement 

technique the AC magnetic field penetration into a pipe of 
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Figure 3: Measurement setup with air-core magnet.  

a circular cross-section was studied. The pipe, made out 
of aluminium (σc=2.7x107 (Ω-m)-1), had an inner radius 
b=19 mm and thickness d=4 mm. It  was more than a 
factor of two longer than the magnet.  

Results for this pipe are shown in Fig. 4. Clearly 
chamber response significantly deviates from the first 
order system response of Eq. (1), which is especially 
apparent in the phase curve. The phase lag exceeds 90 
degrees at frequencies higher than ~280 Hz. On the other 
hand, the exact analytical expression, Eq. (4) matches the 
data quite well. Even a rather subtle feature of the change 
in the sign of the second derivative of the phase is in 
agreement with the data. If Eq. (4) is replaced by Eq. (7) 
then 3-4 poles are enough to obtain a similar agreement 
with the data over this frequency range.  

Good agreement for the round pipe suggests that 1) our 
measurement technique is sound; 2) approximations we 
make for modelling, such as infinitely long pipe, and 
uniform external field, are reasonable and 3) the response 
of accelerator chambers in a more realistic geometry 
should be modelled in similar manner, with thickness 
effects included.  
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Figure 4: AC response for the pipe with round cross-
section. 

NSLS Chamber Results 
The chamber we measured next (shown in Fig. 3) had a 

rectangular cross-section with 42x80 mm2 inner 
dimension and d=4 mm thickness. It was made from 
6061-T4 extruded aluminium. This is a simplified version 
of the true NSLS vacuum chamber that in addition 
typically has ante-chamber and/or cooling channels. 
Results together with Eq. (7) are shown in Fig. 5. 

In addition to the measurements, we studied NSLS 
chamber response with the low-frequency EM field 
simulator in the finite-element modelling package 
ANSYS [6]. The 2D model had ¼ symmetry (x>0, y>0) 
with standard boundary conditions. A uniform Bext 
parallel to the x-axis was fixed at 0.5 m radius from the 
center of the chamber. For frequencies up to 100 Hz five 
elements through the thickness of the tube were modelled 
and for higher frequencies ten elements through the 
thickness of the tube were used to better approximate 
variations in the field. The more refined model consisted 
of approximately 94,000 nodes and used PLANE13 
ANSYS elements. Amplitude and phase with respect to 
Bext was extracted from Re and Im components of 
Bint(x=y=0) estimated by the model. Figure 5 shows 
ANSYS results in green circles. They agree well with the 
measurements and analytical results. 

 

10
0

10
1

10
2

10
3

−25

−20

−15

−10

−5

0

am
pl

itu
de

, d
B

 

 

10
0

10
1

10
2

10
3

−100

−50

0

frequency, Hz

ph
as

e,
 d

eg
re

es

 

 

measurement
ANSYS simulation
Eq.(7) with 3 poles

 
Figure 5: AC response for the NSLS vacuum chamber. 

CONCLUSION 
We performed Hall probe measurements, finite element 

simulations and analytical studies of dipolar AC magnetic 
field penetration into electrically thick vacuum chambers 
in realistic geometry. Good agreement is observed 
between all three. In addition our results for NSLS 
chamber agree with electron beam orbit response 
measurements performed earlier in the NSLS VUV ring 
during orbit feedback system commissioning. 

More fundamentally we have shown that the chamber 
response can be well modelled by a simple transfer 
function, Eq. (7); for most applications it is enough to 
include only a few poles. Explicit expressions for the 
poles are given in Eq. (6) and after Eq. (7). 
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