Paper | Title | Page |
---|---|---|
MO3GRI02 | Neutron-Rich Beams from 252Cf Fission at ATLAS - The CARIBU Project | 65 |
|
||
Funding: This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. Construction of the DOE Californium Rare Ion Breeder Upgrade (CARIBU) for the ATLAS facility is expected to be completed by the end of 2008 and commissioning should be well along by the time of the conference. The facility will use fission fragments from a 1 Ci 252Cf source, thermalized and collected into a low-energy particle beam by a helium gas catcher, mass analyzed by an isobar separator, and charge breed to higher charge states for acceleration in ATLAS. In addition, unaccelerated beams will be available for trap and laser probe studies. Expected yields of accelerated beams are up to ~5x105 (107 to traps) far-from-stability ions per second on target. The facility design and first results of beam acceleration using a weaker 80 mCi source will be presented in this paper and plans for installation of the 1 Ci source will be discussed. |
||
|
||
FR5REP045 | Energy Upgrade of the ATLAS SC Heavy-Ion Linac | 4869 |
|
||
Funding: This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. An energy upgrade project of the ATLAS heavy ion linac at ANL includes a new cryomodule containing seven {10}9 MHz β=0.15 quarter-wave superconducting cavities to provide an additional 15 MV voltage to the existing linac. Several new features have been incorporated into both the cavity and cryomodule design. For example, the primary feature of the cryomodule is a separation of the cavity vacuum space from the insulating vacuum. The cavities are designed in order to cancel the beam steering effect due to the RF field. The cryomodule was designed and built as a prototype for the driver linac of the Facility for Rare Isotope Beams (FRIB). Similar design can be effectively used in the SC proton linac for the Project X at FNAL. Currently, we are working on cryomodule assembly and final preparation of cryogenics, RF, vacuum and other subsystems for off-line tests. The initial commissioning results will be reported. |