A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Zhang, S.C.

Paper Title Page
MO6PFP040 Design Study of Combined Magnet with Combined Function Method 226
 
  • X. Zhao, G. Feng, W. Li, L. Wang, H. Xu, S.C. Zhang
    USTC/NSRL, Hefei, Anhui
 
 

HALS(Hefei Advanced Light Source) is the electron storage ring of ultra-low emittance in process of design. Under this design, the quadrupole magnet with sextupole component must be mounted on which the βη is much bigger, to use enough the effect of compersation chromaticity of sextupole magnet field and to use sparingly the space in the same time . So the combined quadrupole and sextupole magnet must be designed, and have more strong sextupole component and restrain the production of high harmonic field. In this paper, the chocie of design scheme is discussed, and the calculation of combined quadrupole and sextupole mangnet design is given.

 
MO6RFP101 Development of High Brightness Injector at NSRL 605
 
  • S.C. Zhang, D.H. He, Q.K. Jia, Z. Jin, W. Li, S. Lu, L. Shang, B. Sun, Y. Wang, C. Yao, R. Zhuo
    USTC/NSRL, Hefei, Anhui
 
 

A photocathode injector system is developing at NSRL. A BNL type S-band photocathode RF gun has been built. The emittance will be compensated by a Solenoid. The driving laser is a high-Q product. It will be reformed into uniform distribution in the transverse distribution, but will not in the longitudinal direction. The whole system will be tested soon.

 
WE5RFP024 HALS: Our Future Light Source at NSRL 2321
 
  • L. Wang, Z. Bai, G. Feng, W. Li, L. Liu, C.-F. Wu, S.C. Zhang
    USTC/NSRL, Hefei, Anhui
 
 

Hefei Light Source is a second generation VUV light source, whose performance cannot meet the requirements of synchrotron radiation users at the present time. One year ago, the concept of the Hefei Advanced Light Source, whose main features are ultra low beam emittance and high brilliance in VUV and soft X-ray range, was brought forward. In the preliminary design study, a medium scale storage ring and multi bend achromat focusing structure were adopted to achieve beam emittance lower than 0.2 nm.rad. Linear and nonlinear parameter optimizations were performed to obtain large on-momentum and off-momentum dynamic aperture. The design status will be introduced briefly in the presentation.

 
WE5RFP027 Simulation of Hefei Advanced Light Source (HALS) Injection System 2324
 
  • S.C. Zhang, G. Feng, W. Li, L. Liu, L. Wang, C.-F. Wu, H. Xu
    USTC/NSRL, Hefei, Anhui
 
 

Funding: supported by National Natural Science Foundation of China (10705027)


Hefei Advanced Light Source(HALS) is a super low emittance storage ring and has a very poor beam life time. In order to run the ring stablely, Top-up injection will be necessary. Injection system will greatly affect the quality of beam. This article first give a physics design of injecting system. Then the injecting system is tracked under different errors. The responses of storage beam and injecting beam is given in the article.

 
FR5PFP036 Closed Orbit Correction of Hefei Advanced Light Source (HALS) Storage Ring 4384
 
  • G. Feng, W. Li, L. Liu, L. Wang, C.-F. Wu, H. Xu, S.C. Zhang
    USTC/NSRL, Hefei, Anhui
 
 

In order to meet the increasing requirements of synchrotron radiation users, a new plan of VUV and soft X-ray light source, named Hefei Advanced Light Source (HALS), is brought forward by National Synchrotron Radiation Laboratory (NSRL). This 1.5GeV storage ring with ultra low emittance 0.2nmrad consists of 18 combined FBA cells and the circumference is 388m. Strong enough quadrupoles and sextupoles must be needed for getting such low emittance lattice, which will lead beam close orbit distortions’ (COD) sensitivity to the field and alignment errors in magnets. Estimation of the COD from various error sources is investigated. Using orbit response matrix and singular value decomposition method, the distribution of beam position monitors and the location of correctors are reported in the paper. Simulation proves that COD can be corrected down to 60 microns level. In the same time the corrector strengths are weaker enough in the correction scheme.