Paper | Title | Page |
---|---|---|
WE6RFP055 | The Argonne Wakefield Accelerator Facility (AWA): Upgrades and Future Experiments | 2923 |
|
||
Funding: Work supported by the U.S. Department of Energy under contract No. DE-AC02-06CH11357. The Argonne Wakefield Accelerator Facility is dedicated to the study of advanced accelerator concepts based on electron beam driven wakefield acceleration and RF power generation. The facility employs an L-band photocathode RF gun to generate high charge short electron bunches, which are used to drive wakefields in dielectric loaded structures as well as in metallic structures (iris loaded, photonic band gap, etc). Accelerating gradients as high as 100 MV/m have been reached in dielectric loaded structures, and RF pulses of up to 44 MW have been generated at 7.8 GHz. In order to reach higher accelerating gradients, and also be able to generate higher RF power levels, a photocathode with higher quantum efficiency is needed. Therefore, a new RF gun with a Cesium Telluride photocathode will replace the electron gun that has been used to generate the drive bunches. In addition to this, a new L-band klystron will be added to the facility, increasing the beam energy from 15 MeV to 23 MeV, and thus increasing the total power in the drive beam to a few GW. The goal of future experiments is to reach accelerating gradients of several hundred MV/m and to extract RF pulses with GW power level. |
||
FR5PFP040 | Measurement and Simulation of Space Charge Effects in a Multi-Beam Electron Bunch from an RF Photoinjector | 4396 |
|
||
Funding: M.R. and P.P. was supported by the US DOE under Contracts No. DE-FG02-08ER41532 with NIU. W.G., J.P., and Z.Y. are supported by the U.S. DOE under Contract No. DE-AC02-06CH11357 with ANL. We report on a new experimental study of the space charge effect in a space-charge-dominated multi-beam electron bunch. A 5 MeV electron bunch, consisting of a variable number of beamlets separated transversely, was generated in a photoinjector and propagated in a drift space. The collective interaction of these beamlets was studied for different experimental conditions. The experiment allowed the exploration of space charge effects and its comparison with three-dimensional particle-in-cell simulations. Our observations also suggest the possible use of a multi-beam configuration to tailor the transverse distribution of an electron beam. |