A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Yazynin, I.A.

Paper Title Page
WE6RFP021 Beam Loss Predictions for the UA9 Crystal Collimation Experiment 2829
 
  • V.P. Previtali, R.W. Assmann, S. Redaelli
    CERN, Geneva
  • V.P. Previtali
    EPFL, Lausanne
  • I.A. Yazynin
    IHEP Protvino, Protvino, Moscow Region
 
 

The UA9 experiment at the SPS aims at testing bent crystals for usage as collimators with high energy stored proton and heavy ion beams. The experiments will try to establish crystal-based cleaning efficiency with slowly diffusing beam halo. One method for evaluating efficiency relies on Roman Pots and is described elsewhere. An alternative method relies on observing the beam loss signals around the ring. Comparisons of losses escaping from standard collimators and bent crystals will allow determination of cleaning efficiency, equivalent to the definition used for the LHC collimation design. This alternative method is described and simulations with LHC collimation tracking tools for UA9 are discussed. The predicted beam losses along the SPS ring are presented for different orientations and amorphous layer thicknesses of the crystal. The effect of different diffusion speeds for the beam are discussed.

 
WE6RFP022 Simulations of Crystal Collimation for the LHC 2832
 
  • V.P. Previtali, R.W. Assmann, S. Redaelli
    CERN, Geneva
  • V.P. Previtali
    EPFL, Lausanne
  • I.A. Yazynin
    IHEP Protvino, Protvino, Moscow Region
 
 

Bent crystals are promised to provide a path towards significant improvement of cleaning efficiency for high power collimation systems. In this paper a possible implementation of a crystal-enhanced collimation system is evaluated for the LHC. Simulation studies were performed with the same state-of the art tracking codes as used for the design of the conventional LHC collimation system. The numerical models are described and predictions for the local and global cleaning efficiency with a crystal-based LHC collimation system are presented. Open issues and further work towards a crystal collimation design for the LHC are discussed.

 
WE1GRC05 Crystal Collimation Studies at the Tevatron (T-980) 1836
 
  • N.V. Mokhov, G. Annala, A. Apyan, R.A. Carrigan, A.I. Drozhdin, T.R. Johnson, A.M. Legan, R.E. Reilly, V.D. Shiltsev, D.A. Still, R. Tesarek, J.R. Zagel
    Fermilab, Batavia
  • R.W. Assmann, V.P. Previtali, S. Redaelli, W. Scandale
    CERN, Geneva
  • Y.A. Chesnokov, I.A. Yazynin
    IHEP Protvino, Protvino, Moscow Region
  • V. Guidi
    INFN-Ferrara, Ferrara
  • Yu.M. Ivanov
    PNPI, Gatchina, Leningrad District
  • S. Peggs
    BNL, Upton, Long Island, New York
  • M. Prest
    Università dell'Insubria & INFN Milano Bicocca, Como
  • S. Shiraishi
    Enrico Fermi Institute, University of Chicago, Chicago, Illinois
 
 

Funding: Work supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.


Bent-crystal channeling is a technique with a potential to increase the beam-halo collimation efficiency at high-energy colliders. First measurements at the Tevatron in 2005 have shown that using a 5-mm silicon crystal to deflect the proton beam halo onto a secondary collimator improves the system performance by reducing the machine impedance, beam losses in the collider detectors and irradiation of the superconducting magnets, all in agreement with simulations. Recent results, obtained with substantially improved goniometer and enhanced beam diagnostics, are reported showing channeling collimation of the ~1-TeV circulating proton beam halo at the Tevatron collider. Comprehensive results of computer modeling are presented which allow further developments of the T-980 experiment towards a robust system compatible with requirements to high-efficient collimation at the Tevatron and LHC hadron colliders.

 

slides icon

Slides

 
WE6RFP092 Axial Channeling of Positively Charged High-Energy Proton Beams 3010
 
  • V. Guidi, S. Baricordi, P. Dalpiaz, M. Fiorini
    UNIFE, Ferrara
  • A.G. Afonin, Y.A. Chesnokov, V.A. Maisheev, I.A. Yazynin
    IHEP Protvino, Protvino, Moscow Region
  • G. Ambrosi, B. Bertucci, W.J. Burger, P. Zuccon
    INFN-PG, Perugia
  • D. Bolognini, S. Hasan, A. Mozzanica, M. Prest
    Università dell'Insubria & INFN Milano Bicocca, Como
  • G. Cavoto, R. Santacesaria, P. Valente
    INFN-Roma, Roma
  • G. Della Mea, R. Milan, A. Vomiero
    INFN/LNL, Legnaro (PD)
  • A.S. Denisov, Yu.A. Gavrikov, Yu.M. Ivanov, L.P. Lapina, L.G. Malyarenko, V. Skorobogatov, V.M. Suvorov, S.A. Vavilov
    PNPI, Gatchina, Leningrad District
  • A.D. Kovalenko, A.M. Taratin
    JINR, Dubna, Moscow Region
  • C. Luci
    Università di Roma I La Sapienza, Roma
  • A. Mazzolari
    INFN-Ferrara, Ferrara
  • W. Scandale
    CERN, Geneva
  • E. Vallazza
    INFN-Trieste, Trieste
 
 

The H8RD22 collaboration has accomplished an extensive study of axial channeling in the external lines of the CERN SPS. For 400 GeV protons, it was recorded deflection by about 90% of the particles by a short crystal, by far exceeding the performance of previous experiments. Axial channeling with 150 GeV negative hadrons was also firmly observed with deflection capability comparable to the case of positive particles. Near-axis effect such as multiple-volume reflections in a single crystal as a result of the superposition of volume reflections by a series of parallel planes sharing the same axis was investigated with 400 GeV protons. Confirmation of theoretical expectation was observed, in particular most of the particles were deflected by about 50 urad, four times the deflection angle imparted by a single volume reflection of most efficient planes. In this case the angular acceptance was sensitively broader than for the case of channeling. In summary, channeling in axial mode and multi-volume reflections were proven to be two mechanisms for manipulation steering of high-energy particle beams, which side most established techniques such as planar channeling and volume reflection.*


*Contribution on behalf of the H8RD22 collaboration.