Paper | Title | Page |
---|---|---|
WE5RFP007 | Generation of Sub-Hundred Femtosecond X-Ray via Head-On Inverse Compton Scattering | 2276 |
|
||
The feasibility of generating sub-hundred femtosecond X-ray pulses based on inverse Compton scattering of relativistic electron pulses of 50-100 fsec with an 800 nm, 37.5 GW infrared Ti:Sapphire laser has been studied. The feasibility of generating sub-hundred femtosecond X-ray pulses based on head-on inverse Compton scattering (ICS) of relativistic electron pulses with laser has been studied. Relativistic electron pulses of 13.55 fsec can be produced by compressing the energy-chirped beam from a thermionic cathode rf gun with an alpha magnet *. This beam has an intensity of ~ 3.31x108 e- per bunch and is accelerated to 20.5 MeV with an S-band linac structure and is focused to 30 μm for scattering with an 800 nm, 3.75 mJ infrared Ti:Sapphire laser in the laser-beam interaction chamber. With this method, peak flux of back-scattered X-ray photons as high as 2.17x1018 photons/sec is achievable at ~ 1.24 Å wavelength. This femtosecond X-ray source is planned to be used as a tool for studying ultrafast phenomena in nanostructure in the near future. *P. Kung, H.C. Lihn and H. Wiedemann, “Generation and Measurement of 50-fs (rms) Electron Pulses”, Phys. Rev. Lett. Vol.73, p.967-970, August 1994. |