Paper | Title | Page |
---|---|---|
MO6PFP011 | Imperfection Investigation for the Main Magnet Construction for Compact Cyclotron | 154 |
|
||
CYCIAE-100 is a 100 MeV, 200 muA H- cyclotron being constructed at CIAE. The tolerance of the magnetic field is as tight as 1.2 Gauss for isochronous field and 2 Gauss for first harmonics. Due to the absence of coil adjusting in this machine, a measure that helps to achieve a more compact structure (435 ton for the main magnet), the imperfection hence becomes a much more critical factor in our consideration. The effects by the various kinds of imperfection are investigated numerically and the imperfection fields are predicted for beam dynamics simulation, serving as a basic guidance in the magnet construction for CYCIAE-100. Some of the important results will be reported in this paper, including
|
||
TU3PBC05 | Space Charge Simulation on High Intensity Cyclotrons: Code Development and Applications | 730 |
|
||
In high intensity cyclotrons with small turn separation, both the space charge effects of single bunch and the interaction of radially neighbouring bunches play important roles. A PIC-based three-dimensional parallel code, OPAL-CYCL, is newly developed under OPAL framework which self-consistently covers these two collective effects. In this paper we also present the simulation results from the compact cyclotron CYCIAE-100 in the context of the ongoing upgrade program of BRIF at CIAE, with the goal of 100 MeV, 200 μA CW proton beam on target. |
||
|
||
FR5PFP065 | The Object Oriented Parallel Accelerator Library (OPAL) | 4461 |
|
||
OPAL (Object Oriented Parallel Accelerator Library) is a tool for charged-particle optics in accelerator structures and beam lines including 3D space charge, short range wake-fields and a 1D coherent synchrotron radiation. Built from first principles as a parallel application, OPAL admits simulations of any scale, from the laptop to the largest HPC clusters available today. Simulations, in particular HPC (High Performance Computing) simulations, form the third pillar of science, complementing theory and experiment. In this paper we present numerical and HPC capabilities such as fast direct and iterative solvers together with timings up to several thousands of processors. The application of OPAL to our PSI-XFEL project as well as to the ongoing high power cyclotron upgrade will demonstrate OPAL's capabilities applied to ongoing projects at PSI. Plans for future developments will be discussed. |
||
MO6PFP012 | Correction Coil System for Compact High Intensity Cyclotron | 157 |
|
||
To limit the cost for the main magnet of a compact cyclotron CYCIAE-100, the cast steel is used for the top/bottom yoke and return yoke. The imperfection may not be ignored and the harmonic coils on the return yokes will make the fields reaching the requirements easier during the shimming. The centering coils will not only compensate the 1st harmonic fields at the center region, which is usually remain big, but also correct the off-center injection of the beam. The thermal deformation and the vacuum pressure may change the fields distribution during the machine operation and therefore It is necessary to use trim coils to adjust the fields. We arrange the trim coils inside the two opposite valleys of the main magnet. The second harmonics from the trim coils are not big eough to affect the beam dynamics significantly from the beam dynamics study. In this paper, the effects of correction coils of three types are presented. The detail configuration of the correction coils is introduced in the paper as well. One concern is the potential interference of some water cooled coils could have with vacuum. Some experience for the coils inside the high vacuum tank is tested and the results are given. |
||
TU3PBC05 | Space Charge Simulation on High Intensity Cyclotrons: Code Development and Applications | 730 |
|
||
In high intensity cyclotrons with small turn separation, both the space charge effects of single bunch and the interaction of radially neighbouring bunches play important roles. A PIC-based three-dimensional parallel code, OPAL-CYCL, is newly developed under OPAL framework which self-consistently covers these two collective effects. In this paper we also present the simulation results from the compact cyclotron CYCIAE-100 in the context of the ongoing upgrade program of BRIF at CIAE, with the goal of 100 MeV, 200 μA CW proton beam on target. |
||
|