Paper | Title | Page |
---|---|---|
MO4RAC02 | Status of LHC Crab Cavity Simulations and Beam Studies | 85 |
|
||
Funding: This work was partially performed under the auspices of the US DOE and the European Community-Research Infrastructure, FP6 programme (CARE, contract number RII3-CT-2003-506395)} The LHC crab cavity program is advancing rapidly towards a first prototype which is anticipated to be tested during the early stages of the LHC phase I upgrade and commissioning. Some aspects related to crab optics, collimation, aperture constraints, impedances, noise effects, beam transparency and machine protection critical for a safe and robust operation of LHC beams with crab cavities are addressed here. |
||
|
||
TU5PFP009 | Ferroelectric Based High Power Components for L-Band Accelerator Applications | 824 |
|
||
Funding: This work was supported by the US Department of Energy Euclid TechLabs LLC is developing BST based ferroelectric elements designed to be used as the basis for new advanced accelerator components operating in the 1.3 GHz frequency range and intended for Project X and ILC applications. These new ferroelectric elements are designed for the fast active tuner for SC cavities that can operate in air at low biasing DC fields in the range of 15 kV/cm. The BST(M) material (BST ferroelectric with Mg-based additives) allows fast switching and tuning in vacuum and in air both; switching time of material samples < 10 ns has been demonstrated. The overall goal of the program was to design an L-band externally-controlled fast ferroelectric tuner for controlling the coupling of superconducting RF cavities for the future linear colliders. The tuner prototype has been built; a time response of <30 ns, or 1 deg. in 0.5 ns has been reached. . The following problems are addressed: (i) lowering the losses in the ferroelectric material; (ii) improving the technique of the ferroelectric element metallization and brazing; and (iii) improvement breakdown threshold at high voltage bias. |
||
TU5PFP034 | Status of LHC Crab Cavity Cryostat | 894 |
|
||
Funding: This work has been partially performed under the auspices of the US department of energy The complex LHC crab cavity design and the beam-line configuration pose very tight constraints for the cryostat design. An initial assessment of the LHC main RF cryostat points to a new design both from the RF and engineering point of view. The cavity and tunnel constraints are discussed in detail and an intial cryostat design along with the cryogenic circuit is presented. |
||
TU5PFP061 | Improved Input and Output Couplers for SC Acceleration Structure | 966 |
|
||
Different couplers are described that allow the reduction of both transverse wake potential and RF kick in the SC acceleration structure of ILC. A simple rotation of the couplers reducing the RF kick and transverse wake kick is discussed for both the main linac and bunch compressors, along with possible limitations of this method. Designs of a coupler unit are presented which preserve axial symmetry of the structure, and provide reduced both the RF kick and transverse wake field. |
||
TU5PFP062 | Excitation of a Traveling Wave in a Superconducting Structure with Feedback | 969 |
|
||
The accelerating gradient required for the ILC project exceeds 30 MeV/m. With current technology the maximum acceleration gradient in SC structures is determined mainly by the value of the surface RF magnetic field. In order to increase the gradient, the RF magnetic field is distributed homogeneously over the cavity surface (low-loss structure), and coupling to the beam is improved by introducing aperture "noses" (re-entrant structure). These features allow gradients in excess of 50 MeV/m to be obtained for a singe-cell cavity. Further improvement of the coupling to the beam may be achieved by using a TW SC structure with small phase advance per cell. We have demonstrated that an additional gradient increase by up to 46% may be possible if a pi/2 TW SC structure is employed. However, a TW SC structure requires a SC feedback waveguide to return the few GW of circulating RF power from the structure output back to the structure input. Advantages and limitations of different techniques of exciting the traveling wave in this structure are considered, including an analysis of mechanical tolerances. We also report on investigations of transient processes in the SC TW structure. |
||
TU5PFP063 | Low-Beta Structure for High Energy Part of Project X | 972 |
|
||
Long 11-cell, beta=0.81 L-band structure is considered as an initial stage of the high-energy part of the Project-X in order to accommodate to a standard CM4 cryomodule. The cavity shape is optimized for maximal energy gain providing the same time field flatness along the structure not worse than for ILC beta=1 cavity, and the same ratio of surface magnetic field to electric field. The results of spectrum analysis for monopole and dipole HOMs is presented as well as the HOM damper design. |
||
TU5PFP064 | SC Crab Cavity with Reduced Transverse Size for the LHC Upgrade | 975 |
|
||
In the paper the Crab Cavity is described for local Crab schemes for LHC that demand reduced transverse cavity dimensions small enough to fit limited space necessary for the beams separation. The results of the configuration cavity optimization are presented that include (a) the surface field minimization; (b) parasitic monopole and dipole spectrum optimization and dumping, (c) the input and the parasitic mode damping couplers design. The results of multipacting simulations, which were performed in order to understand the possible gradient limitations, are discussed also. |
||
TU5PFP084 | Multi-MW K-Band 7th Harmonic Multiplier for High-Gradient Accelerator R&D | 1026 |
|
||
Funding: Sponsored in part by US Department of Energy, Office of High Energy Physics. A preliminary design is presented for a two-cavity 7th harmonic multiplier, intended as a high-power RF source for use in experiments aimed at developing high-gradient structures for a future collider. The harmonic multiplier is to produce power in K-band using as an RF driver an XK-5 S-band klystron (2.856 GHz). The device is to be built with a TE111 rotating mode input cavity and interchangeable output cavities, a principal example of which is a TE711 mode cavity running at 19.992 GHz. Design of the harmonic multiplier is described that uses a 250 kV, 20 A injected laminar electron beam. With 10 MW of S-band drive power, 4.7 MW of 20-GHz output power is predicted. Details are described of the gun beam optics, beam dynamics in the RF system, and of the magnetic circuit. The theory of an azimuthally distributed coupler for the output cavity is presented, as well as the conceptual design of the entire RF circuit. |
||
TU5PFP093 | Low Beam Voltage, 10 MW, L-Band Cluster Klystron | 1051 |
|
||
Funding: Sponsored in part by US Department of Energy, Office of High Energy Physics. Conceptual design of a multi-beam klystron (MBK) for ILC and Project X application is presented. The chief distinction between the MBK design and existing 10-MW MBK’s is the low operating voltage of 60 kV. There are at least four compelling reasons that justify development of a low-voltage MBK, namely (i) no pulse transformer would be required; (ii) no oil tank would be required for the tube socket; (iii) modulator would be a compact 60-kV IGBT switching circuit. The proposed klystron consists of four clusters that contain six beams each. The tube has common input and output cavities for all 24 beams, and individual gain cavities for each cluster. A closely related optional configuration for a 10 MW tube would involve a design having four totally independent cavity clusters and four 2.5 MW output ports, all within a common magnetic circuit. This option has appeal because the output waveguides would not require a controlled atmosphere and because it would be easier to achieve phase and amplitude stability as required in individual SC cavities. |
||
WE5PFP010 | L-Band 700 MHz High-Power Ferroelectric Phase Shifter | 2006 |
|
||
Measurements are reported for a one-third version of a L-band high-power ferroelectric phase shifter. The device is designed to allow fast adjustments of cavity coupling in an accelerator where microphonics, RF source fluctuations, or another uncontrolled fluctuations could cause undesired emittance growth. Experimental measurements of switching speed, phase shift and insertion loss vs. externally-applied voltage are presented. An average switching rate of 0.5 ns or better for each degree of RF phase has been observed. |
||
WE6RFP064 | Accelerator Applications of New Nonlinear Ferroelectric Materials | 2942 |
|
||
Funding: Work supported by the US Department of Energy. Materials possessing large variations in the permittivity as a function of the electric field exhibit a rich variety of phenomena for electromagnetic wave propagation such as frequency multiplication, wave steepening and shock formation, solitary waves, and mode mixing. New low loss nonlinear microwave ferroelectric materials present interesting and potentially useful applications for both advanced and conventional particle accelerators. Accelerating structures (either wakefield-based or driven by an external rf source) loaded with a nonlinear dielectric may exhibit significant field enhancements. Nonlinear transmission lines can be used to generate short, high intensity rf pulses to drive fast rf kickers. In this paper we will explore the large signal permittivity of these new materials and applications of nonlinear dielectric devices to high gradient acceleration, rf sources, and beam manipulation. We describe planned measurements using a planar nonlinear transmission line to study the electric field dependence of the permittivity of these materials. Diagnostics include appearance of harmonics with a cw drive signal and sharpening of a pulse waveform as it propagates. |
||
WE6RFP105 | Multi-Cavity Proton Cyclotron Accelerator | 3045 |
|
||
Funding: Supported by US Department of Energy, Office of High Energy Physics A detailed analysis is presented of a new concept for a high current, high gradient proton beam accelerator in a normal conducting (i.e. room temperature) structure. The structure consists of a cascade of RF cavities in a nearly uniform magnetic axial field. The proton energy gain mechanism relies upon cyclotron resonance acceleration in each cavity. In order to check the concept and determine its limits, an engineering design is presented of a four cavity electron counterpart test accelerator under construction that will mimic parameters of the multi-cavity proton accelerator. |
||
FR5PFP097 | Implementation of Coupler RF Kick & Coupler Wake Field Effects in Lucretia | 4529 |
|
||
It is well known that Insertion of a coupler into a RF cavity breaks the rotational symmetry of the cavity, resulting in an asymmetric field. This asymmetric field results in a transverse RF Kick*. This RF kick transversely offsets the bunch from the nominal axis & it depends on the longitudinal position of the particle in the bunch. Also, insertion of coupler generates short range transverse wake field** which is independent from the transverse offset of the particle. These effects cause emittance dilution and it is thus important to study their behavior & possible correction mechanisms. These coupler effects, i.e. coupler’s RF kick & coupler's wake field are implemented in a beam dynamics program, Lucretia. Calculations are done for Main Linac. For ILC like Lattices Results are compared with analytical results. and a good agreement has been found. *N.Solyak et al, “RF Kick in the ILC Acceleration Structure. ” MOPP042.pdf (EPAC 08). |
||
FR5RFP059 | Emittance Dilution Caused by the Couplers in the Main Linac and in the Bunch Compressors of ILC | 4673 |
|
||
In the paper the results are presented for calculation of the transverse wake and RF kick from the power and HOM couplers of the acceleration structure. The beam emittance dilution caused by the couplers is calculated for the main linac and bunch compressor of ILC. It is shown that for the bunch compressor this effect may constitute a problem, and modification of the coupler unit may be necessary in order to preserve the cavity axial symmetry. |
||
FR5REP057 | Multi-Cell Reduced-Beta Elliptical Cavities for a Proton Linac | 4899 |
|
||
A superconducting cavity has been designed for acceleration of particles traveling at 81% the speed of light (beta = 0.81). The application of interest is an 8 GeV proton linac proposed for a Fermilab upgrade; at present, the cavity is to be used from 420 MeV to 1.3 GeV. The cavity is similar to the 805 MHz high-beta cavity developed for the SNS Linac, but the resonant frequency (1.3 GHz) and beam tube diameter (78 mm) are the same as for the beta = 1 cavities developed for the TESLA Test Facility. Four single-cell prototype cavities have been fabricated and tested. Two multi-cell prototypes have also been fabricated, but they have not yet been tested. The original concept was for an 8-cell cavity, but the final design and prototyping was done for 7 cells. An 11-cell cavity was proposed recently to allow the cryomodules for the beta = 0.81 cavity and downstream 9-cell beta = 1 cavities to be identical. The choice of number of cells per cavity affects the linac design in several ways. The impact of the number of cells in the 8 GeV linac design will be explored in this paper. Beam dynamics simulations from the ANL code TRACK will be presented. |