Paper | Title | Page |
---|---|---|
WE5RFP083 | Characterization of the BNL ATF Compton X-Ray Source Using K-Edge Absorbing Foils | 2462 |
|
||
It is possible to obtain spectral and angular information of inverse Compton sources using only an x-ray imaging device and various foils with K-edges in the many keV energy range. Beam parameters are chosen such that on-axis photons are above the K-edge for a given material, where absorption is strong and there is relatively zero transmission. Photons observed off-axis are red-shifted and fall below the K-edge, therefore being transmitted and creating a “donut” pattern, or "lobes" in the ideal case for a circularly or linearly polarized laser, respectively. We present simulation and experimental results of the double differential spectrum (DDS) for angle and energy of Compton photons generated at the BNL ATF. |
||
WE6RFP096 | Vacuum Laser Acceleration at BNL-ATF | 3022 |
|
||
The novel and revolutionary concept of VLA proof of principle is described in this paper. The simulation with the current BNL-ATF parameter shows that electron beam can get net energy from intense laser beam. The initial 20 MeV electron beam with energy spread of 0.001 can get hundreds of keV energy gain with energy spread of 0.010 by interacting with a laser a0=1. BNL-ATF's spectrometer can tell 0.0001 accuracy of energy spread and distinguish 0.001 accuracy energy spread. The proposal has been approved by BNL-ATF and the experiment for this proof of principle is going to be scheduled. |
||
MO6RFP064 | Stacking Simulations for Compton Positron Sources of Future Linear Colliders | 512 |
|
||
The Compton positron source of a future linear collider must obtain the target bunch population by accumulating a large number of positron packets, arriving either in a number of bursts from a “Compton ring”, with intermediate damping of the scattering electron beam, or quasi-continually from a “Compton energy recovery linac”. We present simulation results for the longitudinal stacking of Compton positrons in the ILC damping ring and the CLIC pre-damping ring, reporting parameter optimization, stacking efficiency, possible further improvements, and outstanding questions. |
||
TU6PFP049 | Coherent Terahertz Radiation Emitted by Sub-Picosecond Electron Bunches in a Magnetic Chicane | 1391 |
|
||
Coherent radiation emitted by relativistic electron bunches traversing the edge regions of dipole magnets in a chicane bunch compressor was extracted and transported for measurement, using a dedicated terahertz beamline at the Accelerator Test Facility (ATF) at Brookhaven National Laboratory (BNL). Measurements include frequency spectrum and polarization of the radiation. The measurements are compared to predictions from QUINDI, a new simulation code developed at UCLA to model radiation emitted by charged particles in bending systems. Simulations and measurements indicate that because of interference of radiation from the two magnet edges, the edge radiation is suppressed at long wavelengths. In addition to being a source of broadband terahertz radiation, the system is also used as a non-invasive, single-shot, relative bunch length diagnostic to monitor compression in the chicane. |
||
WE6RFP065 | The CLIC Positron Source Based on Compton Schemes | 2945 |
|
||
The CLIC polarized positron source is based on a positron production scheme in which polarized photons are produced by Compton process. Compton backscattering happens in a so-called "Compton ring" where an electron beam of 1.06 GeV interacts with a powerful laser beam amplified in an optical resonator. The circularly-polarized gamma rays are sent on to a target, producing pairs of longitudinally polarized electrons and positrons. An Adiabatic Matching Device maximizes the capture of the positrons. A normal-conducting 2 GHz Linac accelerates the beam up to 2.424 GeV before injection into the Pre-Damping Ring (PDR). The nominal CLIC bunch population is 4.4x109 particles per bunch. Since the photon flux coming out from a "Compton ring" is not sufficient to obtain the requested charge, a stacking process is required in the PDR. Another option is to use a "Compton Energy Recovery Linac" where a quasi-continual stacking in the PDR could be achieved. A third option is to use a "Compton Linac" which would not require stacking. We describe the overall scheme as well as advantages and constraints of the three different options. |
||
TH3GBI03 | Generation of Bunch Trains and Its Applications | 3106 |
|
||
Trains of subpicosecond electron bunches are essential to reach high transformer ratio and high efficiency in compact, beam-driven, plasma-based accelerators. These trains with a correlated energy chirp can also be used in pump-probe experiments driven by FELs. We demonstrate experimentally for the first time that such trains with controllable bunch-to-bunch spacing, bunch length, and charge can be produced using a mask technique. With this simple mask technique, the stability of the bunch train in energy and time is guaranteed by the beam feedback system. |
||
|
||
FR5RFP021 | Acceleration of an Electron Bunch with Narrow Energy Spread in a PWFA | 4576 |
|
||
Funding: Work supported by US Department of Energy. One of the challenges for plasma wakefield accelerators (PWFAs) is to accelerate a trailing bunch with a narrow energy spread. The real challenge is to produce a bunch train with a least one drive bunch and one trailing bunch. We have demonstrated experimentally at the BNL-ATF a mask technique that can produce trains of bunches with variable spacing in the sub-picosecond range*. This 60 MeV train with one to five drive bunches and a trailing bunch propagates in a 1 to 2 cm long plasma capillary discharge with a variable plasma density. When the plasma density is tuned such that the plasma wavelength is equal to the drive bunches spacing the plasma wakefield is resonantly excited. The distance between the last drive bunch and the trailing bunch is one and a half time that between the drive bunches, putting the trailing bunch in the accelerating phase of the wakefield. The resonance is characterized by a maximum energy loss by all the drive bunches and maximum energy gain by the trailing bunch. Experimental results will be presented. *P. Muggli et al., Phys. Rev. Lett. {10}1, 054801, 2008 |
||
FR5RFP022 | Generation of Bunch Trains for Plasma Wakefield Accelerator Applications | 4579 |
|
||
Funding: Work supported by US Department of Energy. At the BNL-ATF we have recently demonstrated the generation of trains of electron with sub-picosecond spacing*. These trains of equidistant bunches can be used to resonantly excite large amplitude wakefields in plasmas. The resonance is reached when the plasma wavelength is equal to the drive bunch train spacing. However, in order accelerate an electron bunch with a narrow energy spread, a trailing witness bunch must be generated. The witness bunch must be separated from the last drive bunch by one and a half time the distance between drive bunches. We show that such a drive/witness bunch train can be generated. The mask can also be designed to produce witness bunches trailing the drive bunch train by 2.5,3. 5, times the drive bunch spacing in order to probe the coherence of the plasma wake in subsequent wave bucket. Resonantly driving plasma wakes with trains of bunches could lead to multiplication of the trailing bunch energy by up to the number of bunches in the drive train with high efficiency in a single stage. Experimental results will be presented. * P. Muggli et al., Phys. Rev. Lett. {10}1, 054801, 2008 |
||
FR5RFP096 | Simulation Results of Current Filamentation Instability Generated from PWFA Electron Beam | 4764 |
|
||
Funding: Work supported by US Department of Energy. Current Filamentation Instability, CFI, (or Weibel instability) is of central importance for relativistic beams in plasmas for the laboratory, ex. fast-igniter concept for inertial confinement fusion, and astrophysics, ex. cosmic jets. Simulations, with the particle-in-cell code QuickPic, with a beam produced by an RF accelerator show the appearance and effects of CFI. The instability is investigated as a function of electron beam parameters (including charge, transverse size and length) and plasma parameters (density and length) by evaluating the filament currents and magnetic fields. We present simulation results, discuss further simulation refinements, suggest criteria and threshold parameters for observing the presence of CFI and outline a potential future experiment. |