Paper | Title | Page |
---|---|---|
MO4RAC02 | Status of LHC Crab Cavity Simulations and Beam Studies | 85 |
|
||
Funding: This work was partially performed under the auspices of the US DOE and the European Community-Research Infrastructure, FP6 programme (CARE, contract number RII3-CT-2003-506395)} The LHC crab cavity program is advancing rapidly towards a first prototype which is anticipated to be tested during the early stages of the LHC phase I upgrade and commissioning. Some aspects related to crab optics, collimation, aperture constraints, impedances, noise effects, beam transparency and machine protection critical for a safe and robust operation of LHC beams with crab cavities are addressed here. |
||
|
||
WE5PFP047 | A Compact Alternative Crab Cavity Design at 400-MHz for the LHC Upgrade | 2104 |
|
||
Funding: This work was supported by DOE Contract No. DE-AC02-76SF00515 and used resources of NERSC supported by DOE Contract No. DE-AC02-05CH11231, and of NCCS supported by DOE Contract No. DE-AC05-00OR22725. Crab cavities are proposed for the LHC upgrade to improve the luminosity. In the local crabbing scheme, the crab cavities are located close to the interaction region and the transverse separation between the two beam lines at the crab cavity location can only accommodate an 800-MHz cavity of the conventional elliptical shape. Thus the baseline crab cavity design for the LHC upgrade is focused on the 800-MHz elliptical cavity shape although a lower frequency cavity is preferable due to the long bunch length. In this paper, we present a compact 400-MHz design as an alternative to the 800-MHz baseline design. The compact design is of a half-wave resonator (HWR) shape that has a small transverse dimension and can fit into the available space in the local crabbing scheme. The optimization of the HWR cavity shape and the couplers for the HOM, LOM, and SOM damping will be presented. |
||
WE5PFP048 | 800MHz Crab Cavity Conceptual Design for the LHC Upgrade | 2107 |
|
||
Funding: This work was supported by DOE Contract No. DE-AC02-76SF00515 and used resources of NERSC supported by DOE Contract No. DE-AC02-05CH11231, and of NCCS supported by DOE Contract No. DE-AC05-00OR22725. In this paper, we present a 800MHz crab cavity conceptual design for LHC upgrade, including the cell shape optimization, and LOM, SOM, HOM and input coupler design. The compact coax-to-coax coupler scheme is proposed to couple to the LOM and SOM modes which can provide strong coupling to the LOM and SOM modes. HOM coupler design uses a two-stub antenna with a notch filter to couple to the HOM modes in the horizontal plane and reject the operating mode at 800MHz. All the damping results for the LOM/SOM/HOM modes satisfy their damping requirements. The multipacting in cell and couplers is simulated as well. And the issue of the cross-coupling between the input coupler and LOM/SOM couplers due to cavity asymmetry is addressed. The power coming out of the LOM/SOM/HOM couplers are estimated. All the simulations are carried out using SLAC developed parallel EM simulation codes Omega3P, S3P and Track3P. |
||
WE5RFP015 | Concepts for the PEP-X Light Source | 2297 |
|
||
Funding: This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-76SF00515. SSRL and SLAC groups are developing a long-range plan to transfer its evolving scientific programs from the SPEAR3 light source to a much higher performing photon source that would be housed in the 2.2-km PEP-II tunnel. While various concepts for the PEP-X light source are under consideration, including ultimate storage ring and ERL configurations, the present baseline design is a very low-emittance storage ring. A hybrid lattice has DBA or QBA cells in two of the six arcs that provide a total ~30 straight sections for ID beam lines extending into two new experimental halls. The remaining arcs contain TME cells. Using ~100 m of damping wigglers the horizontal emittance at 4.5 GeV would be ~0.1 nm-rad with >1 A stored beam. PEP-X will produce photon beams having brightnesses near 1022 at 10 keV. Studies indicate that a ~100-m undulator could have FEL gain and brightness enhancement at soft x-ray wavelengths with the stored beam. Crab cavities or other beam manipulation systems could be used to reduce bunch length or otherwise enhance photon emission properties. The present status of the PEP-X lattice and beam line designs are presented and other implementation options are discussed. |
||
TH5PFP089 | Trapped Mode Study for a Rotatable Collimator Design for the LHC Upgrade | 3416 |
|
||
Funding: This work was supported by DOE Contract No. DE-AC02-76SF00515 and used resources of NERSC supported by DOE Contract No. DE-AC02-05CH11231, and of NCCS supported by DOE Contract No. DE-AC05-00OR22725. A rotatable collimator is proposed for the LHC phase II collimation upgrade. When the beam crosses the collimator, trapped modes will be excited that result in beam energy loss and collimator power dissipation. Some of the trapped modes can also generate transverse kick on the beam and affect the beam operation. In this paper the parallel eigensolver code Omega3P is used to search for all the trapped modes below 2GHz in the collimator, including longitudinal modes and transverse modes. The loss factors and kick factors of the trapped modes are calculated as function of the jaw positions. The amplitude ratio between transverse and longitudinal trapped mode intensity can be used as a direct measure of the position of the beam. We present simulation results and discuss the results. |