Paper | Title | Page |
---|---|---|
MO6RFP092 | Undulator-Based Positron Source for CLIC | 581 |
|
||
A model has been created in Geant4 to simulate the key elements of an undulator-based positron source for CLIC: the goal is to consider such a source as an alternative to the present baseline concept. The parameters of the undulator and capture device have been optimized for a range of operating scenarios. In each case we have calculated the rate of positron production, positron polarization and capture efficiency. We discuss the strengths and weaknesses of the undulator scheme in CLIC. |
||
MO6RFP093 | High Power Photon Collimators for the ILC | 584 |
|
||
An undulator-based source has been chosen as a part of the baseline configuration for the International Linear Collider (ILC) to generate an intense beam of polarised positrons. A photon collimator placed between the undulator and the target can be used to adjust the size, intensity and polarisation of the photon beam impacting the target, and can also protect the target station and limit the activation of downstream components. In this paper, we calculate quantities such as the energy deposition, temperature change, activation and dose rate for different designs of the photon collimator, and consider the advantages and disadvantages for each case. |
||
TH6PFP099 | Fast, Accurate Calculation of Dynamical Maps from Magnetic Field Data Using Generalised Gradients | 3943 |
|
||
Analytic descriptions of arbitrary magnetic fields can be calculated from the generalised gradients* of the on-axis field. Using magnetic field data, measured or computed on the surface of a cylinder, the generalised gradients can be calculated by solving Laplace's equation to find the three-dimensional multipole expansion of the field within the cylinder. After a suitable transformation, this description can be combined with a symplectic integrator allowing the transfer map to be calculated. A new tracking code is under development in C++, which makes use of a differential algebra class to calculate the transfer map. The code has been heavily optimised to give a fast, accurate calculation of the transfer map for an arbitrary field. The multipole nature of the field description gives additional insights into fringe-field and pseudo-multipole effects and allows a deeper understanding of the beam dynamics. *Venturini M. and Dragt A., NIM Phys. Res. Sect. A, 427, 387 (1999) |
||
FR5PFP031 | Possible Limitations in Coupling Correction Using Orbit Response Matrix Analysis | 4375 |
|
||
The specified vertical emittance for the ILC damping rings is 2 pm. A major objective for the Accelerator Test Facility (ATF) at KEK is to demonstrate reliable operation in this low emittance regime. LOCO is a tool for identifying optics errors in storage rings, based on fitting a lattice model to the measured closed orbit response matrix. This technique can be used to determine corrections to minimise vertical dispersion and betatron coupling, and hence reduce the vertical emittance. So far, efforts to apply LOCO to the ATF to achieve 2 pm vertical emittance have met with limited success. This paper presents the results of simulations aiming to identify possible limitations in the technique. We consider the effects of varying parameters controlling the fit of the lattice model to the measured data, and investigate possible degeneracies (e.g. between skew quadrupole strengths and tilts of the corrector magnets) that may limit the quality of the correction achievable using this technique. |
||
FR5PFP093 | Applications of a New Code to Compute Transfer Maps and Describe Synchrotron Radiation | 4520 |
|
||
An analytic tracking code has been developed to describe an arbitrary magnetic field in terms of its generalised gradients* and multipole expansion, which is used with a 2nd-order symplectic integrator** to calculate dynamical maps for particle tracking. The modular nature of the code permits a high degree of flexibility and allows customised modules to be integrated within the code framework. Several different applications are presented, and the speed, accuracy and flexibility of the algorithms are demonstrated. A module to simulate synchrotron emission is described and its application to an 'ILC-type' undulator system is demonstrated. *Venturini M. and Dragt A., NIM Phys. Res. Sect. A, 427, 387 (1999) |
||
FR5RFP040 | Wake Field Simulations for the Vacuum Chamber Transitions of the ILC Damping Ring | 4619 |
|
||
Vacuum chamber transitions of the ILC damping rings associated with BPM insertions, vacuum ports, antechamber tapers etc, may make a significant contribution to the overall machine impedance. Since most transitions are not azimuthally symmetric, commercial 3D codes based on the finite element method have been used to compute their wake fields. The results for selected vacuum chamber components are presented in this paper, together with some estimates of the impact of the wake fields on the beam dynamics in the damping rings. |
||
FR1RAI02 | The Conversion and Operation of the Cornell Electron Storage Ring as a Test Accelerator (CesrTA) for Damping Rings Research and Development | 4200 |
|
||
Funding: Support provided by the US National Science Foundation, the US Department of Energy, and the Japan/US Cooperation Program. In March of 2008, the Cornell Electron Storage Ring (CESR) concluded twenty eight years of colliding beam operations for the CLEO high energy physics experiment. We have reconfigured CESR as an ultra low emittance damping ring for use as a test accelerator (CesrTA) for International Linear Collider (ILC) damping ring R&D. The primary goals of the CesrTA program are to achieve a beam emittance approaching that of the ILC Damping Rings with a positron beam, to investigate the interaction of the electron cloud with both low emittance positron and electron beams, to explore methods to suppress the electron cloud, and to develop suitable advanced instrumentation required for these experimental studies (in particular a fast x-ray beam size monitor capable of single pass measurements of individual bunches). We report on progress with the CESR conversion activities, the status and schedule for the experimental program, and the first experimental results that have been obtained. |
||
|
||
FR1RAI03 | ATF2 Commissioning | 4205 |
|
||
ATF2 is a final-focus test beam line that attempts to focus the low-emittance beam from the ATF damping ring to a beam size of about 37 nm, and at the same time to demonstrate nm beam stability, using numerous advanced beam diagnostics and feedback tools. The construction is well advanced and beam commissioning of ATF2 has started in the second half of 2008. ATF2 is constructed and commissioned by ATF international collaborations with strong US, Asian and European participation. |
||
|
||
TH5PFP041 | Particle Tracking Studies Using Dynamical Map Created from Finite Element Solution of the EMMA Cell | 3290 |
|
||
The unconventional size and the possibility of transverse displacement of the magnets in the EMMA non-scaling FFAG motivates a careful study of particle behavior within the EMMA ring. The magnetic field map of the doublet cell is computed using a Finite Element Method solver; particle motion through the field can then be found by numerical integration, using (for example) OPERA, or ZGOUBI. However, by obtaining an analytical description of the magnetic field (by fitting a Fourier-Bessel series to the numerical data) and using a differential algebra code, such as COSY, to integrate the equations of motion, it is possible to produce a dynamical map in Taylor form. This has the advantage that, after once computing the dynamical map, multi-turn tracking is far more efficient than repeatedly performing numerical integrations. Also, the dynamical map is smaller (in terms of computer memory) than the full magnetic field map; this allows different configurations of the lattice, in terms of magnet positions, to be represented very easily using a set of dynamical maps, with interpolation between the coefficients in different maps*. *yoel.giboudot@stfc.ac.uk |
||
FR1RAC05 | Update on Optics Modelling for the ATF Damping Ring at KEK | 4213 |
|
||
One of the goals of the Accelerator Test Facility (ATF) at KEK is to demonstrate ultra-low vertical emittance for linear colliders. Highly precise correction of the vertical dispersion and betatron coupling will be needed to achieve the target of 2 pm (which will be required for ILC). Optics correction and tuning must be supported by an accurate model, which can be developed from a variety of beam measurements, including orbit response to dipole kicks, beta functions at the quadrupoles, etc. Here, we report experimental data and the status of the model and low-emittance tuning. |
||
|