A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Wildner, E.H.M.

Paper Title Page
WE6PFP025 Energy Deposition Patterns in the LHC Inner Triplet and Their Impact on the Phase II Luminosity Upgrade 2543
 
  • E.H.M. Wildner, F. Cerutti, A. Ferrari, A. Mereghetti, E. Todesco
    CERN, Geneva
  • F. Broggi
    INFN/LASA, Segrate (MI)
 
 

Recent studies show that the energy deposition for the LHC phase one luminosity upgrade, aiming at a peak luminosity 2.5 1034 cm-2s-1, can be handled by appropriate shielding. The phase II upgrade aims at a further increase of a factor 4, possibly using Nb3Sn quadrupoles. This paper describes how the main features of the triplet layout, such as quadrupole lengths, gaps between magnets, and aperture, affect the energy deposition in the insertion. We show the dependence of the triplet lay-out on the energy deposition patterns in the insertion magnets. An additional variable which is taken into account is the choice of conductor, i.e. solutions with Nb-Ti and Nb3Sn are compared. Nb3Sn technology gives possibilities for increasing the magnet apertures and space for new shielding solutions. Our studies give a first indication on the possibility of managing energy deposition for the phase II upgrade.

 
WE6RFP018 Energy Deposition Studies for the LHC Insertion Region Upgrade Phase-1 2820
 
  • F. Cerutti, F. Borgnolutti, A. Ferrari, A. Mereghetti, E.H.M. Wildner
    CERN, Geneva
 
 

While the Large Hadron Collider (LHC) at CERN is starting operation with beam, aiming to achieve nominal performance in the shortest term, the upgrade of the LHC interaction regions is actively pursued in order to enhance the physics reach of the machine. Its first phase, with the target of increasing the LHC luminosity to 2-3 1034 cm-2 s-1, relies on the mature Nb-Ti superconducting magnet technology and is intended to maximize the use of the existing infrastructure. The impact of the increased power of the collision debris has been investigated through detailed energy deposition studies, considering the new aperture requirements for the low-beta quadrupoles and a number of other elements in the insertions. Effective solutions in terms of shielding options and design/layout optimization have been envisaged and the crucial factors have been pointed out.