Paper | Title | Page |
---|---|---|
MO6RFP042 | A Highly Flexible Low Energy Ion Injector at KACST | 451 |
|
||
At the National Centre for Mathematics and Physics (NCMP), at the King Abdulaziz City for Science and Technology (KACST), Saudi Arabia, a multi-purpose low-energy experimental platform is presently being developed in collaboration with the QUASAR group. The aim of this project is to enable a multitude of low-energy experiments with most different kinds of ions both in single pass setups, but also with ions stored in a low-energy electrostatic storage ring. In this contribution, the injector of this complex is presented. It was designed to provide beams with energies of up to 30 kV/q and will allow for switching between different ion sources from e.g. duoplasmatron to electrospray ion sources and to thus provide the users with a wide range of different beams. We present the overall layout of the injector with a focus on its mechanical and ion optical design. |
||
TH6REP043 | Beam Diagnostics for the USR | 4048 |
|
||
Funding: Work supported by the Helmholtz Association of National Research Centers (HGF) under contract number VH-NG-328 and GSI Helmholtzzentrum für Schwerionenforschung GmbH. The novel electrostatic Ultra-low energy Storage Ring (USR), planned to be installed at the future Facility for Low-energy Antiproton and Ion Research (FLAIR), will slow down antiprotons and possibly highly charged ions down to 20 keV/q. This multipurpose machine puts challenging demands on the necessary beam instrumentation. Ultra-short bunches (1-2 ns) on the one hand and a quasi-DC beam structure on the other, together with a variable very low beam energies (20-300 keV/q), ultra-low currents (down to 1 nA or even less for a non-circulating beam) and few particles (< 2x107), require the development of new diagnostic devices as most of the standard techniques are not suitable. Several solutions, like resonant capacitive pick-ups, beam profile monitors, Faraday cups or cryogenic current comparators, are under consideration. This contribution presents the beam instrumentation foreseen for the USR. |
||
TH6REP044 | DITANET – An Overview of the First Year Achievements | 4051 |
|
||
Funding: Supported by the EU under contract PITN-GA-2008-215080 Beam diagnostics is a rich field in which a great variety of physical effects are made use of and consequently provides a wide and solid base for the training of young researchers. Moreover, the principles that are used in any beam monitor or detector enter readily into industrial applications or the medical sector which guarantees that training of young researchers in this field is of relevance far beyond the pure field of particle accelerators. DITANET- "DIagnostic Techniques for particle Accelerators a European NETwork" - covers the development of advanced beam diagnostic methods for a wide range of existing or future accelerators, both for electrons and ions. DITANET is the largest ever coordinated EU education action for PhD students in the field of beam diagnostic techniques for future particle accelerators with a total budget of 4.2 M. This contribution gives an overview of the network’s activities and outlines selected research results from the consortium. |
||
FR5PFP013 | An Update of the USR Lattice: Towards a True Multi-User Experimental Facility | 4335 |
|
||
Funding: Work supported by the Helmholtz Association of National Research Centers (HGF) under contract number VH-NG-328 and GSI Helmholtzzentrum für Schwerionenforschung GmbH In the future Facility for Low-energy Antiproton and Ion Research (FLAIR) at GSI, the Ultra-low energy electrostatic Storage Ring (USR) will provide cooled beams of antiprotons and possibly also highly charged ions down to energies of 20 keV/q. A large variety of the envisaged experiments demands a very flexible ring lattice to provide a beam with variable cross section, shape and time structure, ranging from ultra-short pulses to coasting beams. The preliminary design of the USR worked out in 2005 was not optimized in this respect and had to be reconsidered. In this contribution we present the final layout of the USR with a focus on its “split-achromat” geometry, the combined fast/slow extraction, and show the different modes of operation required for electron cooling, internal experiments, or beam extraction. We finally give a summary of the machine parameters and the layout of the optical elements. |
||
FR5REP042 | Investigations into the USR "Short Pulse" Operation Mode | 4863 |
|
||
Funding: Work supported by the Helmholtz Association of National Research Centers (HGF) under contract number VH-NG-328 and GSI Helmholtzzentrum für Schwerionenforschung GmbH. One of the central goals of the Ultra-Low energy Storage Ring (USR) project within the future Facility for Low-energy Antiproton and Ion Research (FLAIR) is to provide very short bunches in the 1-2 nanosecond regime to pave the way for kinematically complete measurements of the collision dynamics of fundamental few-body quantum systems for the first time on the level of differential cross sections. The “short pulse” operation mode may be split up in two steps: First, the cooled coasting beam of low energy ions will be adiabatically captured by a high harmonic RF cavity (20 MHz) into ~50 ns buckets. Second, the beam will be compressed to very short pulses with a desired width of only 1-2 ns by an RF buncher located 2 m in front of the so-called reaction microscope. To efficiently limit the beam energy spread, RF decompression is then done at after the experiment to avoid beam losses. In this contribution, we present numerical investigations of this very particular operation mode. |
||
FR5REP044 | Layout of an Electrostatic Storage Ring at KACST | 4866 |
|
||
A state-of-the-art fixed energy electrostatic storage ring that will allow for precision experiments with most different kinds of ions in the energy range of up to 30 keV will be constructed and operated at the National Center for Mathematic and Physics (NCMP) at the King Abdulaziz City for Science and Technology (KACST). The ring is planed to be the central machine of a unique and highly flexible experimental platform. The lattice design therefore has to cover the different experimental techniques that the ring will be equipped with, such as e.g. electron-ion crossed-beams and ion-laser/ion-ion/ion-neutral merged-beams techniques. This paper presents the technical and particle optical design of this novel machine, explains the particular challenges in its layout, and reports on the general project status. |
||
MO6PFP017 | Magnetic Field Control in Synchrotrons | 169 |
|
||
The use of hadron beams delivered by normal conducting synchrotrons is highly attractive in various fundamental research applications as well as in the field of particle therapy. These applications require fast synchrotron operation modes with pulse-to-pulse energy variation and magnetic field slopes up to 10 T/s. The aims are to optimize the duty-cycle or to minimize treatment times for the patients as well as to provide extremely stable properties of the extracted beams, i.e. position and spill structure. Studies performed at the SIS18 synchrotron at GSI showed that not only the dipoles but the quadrupoles as well significantly contribute to the underlying time constants of the slowly extracted beam. An attempt has been made to measure the magnetic fields in synchrotron magnets with high precision and speed comparable to the current measurement with a DCCT. Additional magnetic field monitoring includes the retarding effects into the current control feedback loop neglecting the unfavourable dynamic effects from hysteresis and eddy currents. The presentation describes this controls approach, the results obtained at the HIT synchrotron and the SIS18 at GSI will be discussed. |
||
FR5REP053 | Higher Order Modes in the SC Cavities of the SPL | 4887 |
|
||
In this paper is analysed the influence of Higher Order Modes (HOM) on the operation of the superconducting linac section of the SPL, the Superconducting Proton Linac being designed at CERN. For this purpose, the characteristics of the HOMs in the 2 different beta families (0.65, 0.92 both at 704 MHz) of the SPL are calculated to estimate their effect on the cryogenic system and on the beam stability. For both criteria the maximum external Q of the HOMs is defined. |
||
TH6REP044 | DITANET – An Overview of the First Year Achievements | 4051 |
|
||
Funding: Supported by the EU under contract PITN-GA-2008-215080 Beam diagnostics is a rich field in which a great variety of physical effects are made use of and consequently provides a wide and solid base for the training of young researchers. Moreover, the principles that are used in any beam monitor or detector enter readily into industrial applications or the medical sector which guarantees that training of young researchers in this field is of relevance far beyond the pure field of particle accelerators. DITANET- "DIagnostic Techniques for particle Accelerators a European NETwork" - covers the development of advanced beam diagnostic methods for a wide range of existing or future accelerators, both for electrons and ions. DITANET is the largest ever coordinated EU education action for PhD students in the field of beam diagnostic techniques for future particle accelerators with a total budget of 4.2 M. This contribution gives an overview of the network’s activities and outlines selected research results from the consortium. |