Paper | Title | Page |
---|---|---|
MO4RAC02 | Status of LHC Crab Cavity Simulations and Beam Studies | 85 |
|
||
Funding: This work was partially performed under the auspices of the US DOE and the European Community-Research Infrastructure, FP6 programme (CARE, contract number RII3-CT-2003-506395)} The LHC crab cavity program is advancing rapidly towards a first prototype which is anticipated to be tested during the early stages of the LHC phase I upgrade and commissioning. Some aspects related to crab optics, collimation, aperture constraints, impedances, noise effects, beam transparency and machine protection critical for a safe and robust operation of LHC beams with crab cavities are addressed here. |
||
|
||
WE6PFP012 | LHC Cleaning Efficiency with Imperfections | 2504 |
|
||
The performance reach of the LHC depends on the magnitude of beam losses and the achievable cleaning efficiency of its collimation system. The ideal performance reach for the nominal Phase 1 collimation system is reviewed. However, unavoidable imperfections affect any accelerator and can further deteriorate the collimation performance. Multiple static machine and collimator imperfections were included in the LHC tracking simulations. Error models for collimator jaw flatness, collimator setup accuracy, the LHC orbit and the LHC aperture were set up, based to the maximum extent possible on measurements and results of experimental beam tests. It is shown that combined "realistic" imperfections can reduce the LHC cleaning efficiency by about a factor 11 on average. |
||
WE6PFP013 | Beam Commissioning Plan for LHC Collimation | 2507 |
|
||
The Large Hadron Collider extends the present state-of-the-art in stored beam energy by 2-3 orders of magnitude. A sophisticated system of collimators is implemented along the 27 km ring and mainly in two dedicated cleaning insertions, to intercept and absorb unavoidable beam losses which could induce quenches in the superconducting magnets. 88 collimators per beam are initially installed for the so called Phase 1. An optimized strategy for the commissioning of this considerable number of collimators has been defined. This optimized strategy maximizes cleaning efficiency and tolerances available for operation, while minimizing the required beam time for collimator setup and ensuring at all times the required passive machine protection. It is shown that operational tolerances from collimation can initially significantly relaxed. |
||
WE6PFP020 | Study with One Global Crab Cavity at IR4 for LHC | 2528 |
|
||
Funding: This work was supported by the European Community-Research Infrastructure Activity under the FP6 "Structuring the European Research Area" programme (CARE, contract number RII3-CT-2003-506395). Modern colliders bring into collision a large number of bunches per pulse or per turn to achieve a high luminosity. The long-range beam-beam effects arising from parasitic encounters at such colliders are mitigated by introducing a crossing angle. Under these conditions, crab cavities (CC) can be used to restore effective head-on collisions and thereby to increase the geometric luminosity. In this paper, we discuss the beam dynamics issues of a single global crab cavity (GCC) for both nominal LHC optics and one upgrade LHC optics. |
||
WE6RFP023 | Operational Experience with a LHC Collimator Prototype in the CERN SPS | 2835 |
|
||
A full scale prototype of the Large Hadron Collider (LHC) collimator was installed in 2004 in the CERN Super Proton synchrotron (SPS). During three years of operation the prototype has been used extensively for beam tests, for control tests and also to benchmark LHC simulation tools. This operational experience has been extremely valuable in view of the final LHC implementation as well as for estimating the LHC operational scenarios, most notably to establish procedures for the beam-based alignment of the collimators with respect to the circulating beam. This was made possible by installing in the SPS a first prototype of the LHC beam loss monitoring system. The operational experience gained at the SPS, lessons learnt for the LHC operation and various accelerator physics effects that could limit the efficiency of the collimator alignment procedures are presented. |
||
TH5PFP008 | Accelerator Physics Concept for Upgraded LHC Collimation Performance | 3202 |
|
||
The LHC collimation system is implemented in phases, in view of the required extrapolation by 2-3 orders of magnitude beyond Tevatron and HERA experience in stored energy. All available simulations predict that the LHC proton beam intensity with the "phase 1" collimation system may be limited by the impedance of the collimators or cleaning efficiency. Maximum efficiency requires collimator materials very close to the beam, generating the dominant resistive impedance in the LHC. Above a certain intensity the beam is unstable. On the other hand, even if collimators are set very close to the beam, the achievable cleaning efficiency is predicted to be inadequate, requiring either beam stability beyond specifications or reduced intensity. The accelerator physics concept for upgrading cleaning efficiency, for both proton and heavy ion beams, and reducing collimator-related impedance is described. Besides the "phase 2" secondary collimators, new collimators are required in a few super-conducting regions. |
||
TH5PFP009 | Studies on Combined Momentum and Betatron Cleaning in the LHC | 3205 |
|
||
Collimation and halo cleaning for the LHC beams are performed separately for betatron and momentum losses, requiring two dedicated insertions for collimation. Betatron cleaning is performed in IR7 while momentum cleaning is performed in IR3. A study has been performed to evaluate the performance reach for a combined betatron and momentum cleaning system in IR3. The results are presented. |
||
TH5RFP035 | Energy Deposition Simulations and Measurements in an LHC Collimator and Beam Loss Monitors | 3525 |
|
||
The LHC collimators are protected against beam caused damages by measuring the secondary particle showers with beam loss monitors. Downstream of every collimator an ionisation chamber and a secondary emission monitor are installed to determine the energy deposition in the collimator. The relation between the energy deposition in the beam loss monitor and the collimator jaw is based on secondary shower simulations. To verify the FLUKA simulations the prototype LHC collimator installed in the SPS was equipped with beam loss monitors. The results of the measurements of the direct impact of the 26 GeV proton beam injected in the SPS onto the collimator are compared with the predictions of the FLUKA simulations. In addition simulation results from parameter scans and for mean and peak energy deposition with its dependencies are shown. |
||
WE6RFP015 | Energy Deposition Studies for Possible Innovative Phase II Collimator Designs | 2811 |
|
||
Due to the known limitations of Phase I LHC collimators in stable physics conditions, the LHC collimation system will be complemented by additional 30 Phase II collimators. The Phase II collimation system is designed to improve cleaning efficiency and to minimize the collimator-induced impedance with the main function of protecting the Super Conducting (SC) magnets from quenching due to beam particle losses. To fulfil these requirements, different possible innovative collimation designs were taken in consideration. Advanced jaw materials, including new composite materials (e.g. Cu–Diamond), jaw SiC insertions, coating foil, in-jaw instrumentation (e.g. BPM) and improved mechanical robustness of the jaw are the main features of these new promising Phase II collimator designs developed at CERN. The FLUKA Monte Carlo code is extensively used to evaluate the behavior of these collimators in the most radioactive areas of LHC, supporting the mechanical integration. These studies aim to identify the possible critical points along the IR7 line. |