A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Walker, R.P.

Paper Title Page
TU5RFP022 A Proposed New Light Source Facility for the UK 1141
 
  • R.P. Walker, R. Bartolini, C. Christou, J.H. Han, J. Kay, I.P.S. Martin, G. Rehm, J. Rowland
    Diamond, Oxfordshire
  • D. Angal-Kalinin, M.A. Bowler, J.A. Clarke, D.J. Dunning, B.D. Fell, A.R. Goulden, F. Jackson, S.P. Jamison, J.K. Jones, K.B. Marinov, P.A. McIntosh, J.W. McKenzie, B.L. Militsyn, A.J. Moss, B.D. Muratori, S.M. Pattalwar, M.W. Poole, R.J. Smith, S.L. Smith, N. Thompson, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • N. Bliss, G.P. Diakun, M.D. Roper
    STFC/DL, Daresbury, Warrington, Cheshire
  • J.L. Collier, C.A. Froud, G.J. Hirst, E. Springate
    STFC/RAL, Chilton, Didcot, Oxon
  • J.P. Marangos, J.W.G. Tisch
    Imperial College of Science and Technology, Department of Physics, London
  • B.W.J. McNeil
    USTRAT/SUPA, Glasgow
  • H.L. Owen
    UMAN, Manchester
 
 

The New Light Source (NLS) project was launched in April 2008 by the UK Science and Technology Facilities Council (STFC) to consider the scientific case and develop a conceptual design for a possible next generation light source based on a combination of advanced conventional laser and free-electron laser sources. Following a series of workshops and a period of scientific consultation, the science case was approved in October 2008 and the go-ahead given to continue the project to the design stage. In November the decision was taken that the facility will be based on cw superconducting technology in order to provide the best match to the scientific objectives. In this paper we present the source requirements, both for baseline operation and with possible upgrades, and the current status of the design of the accelerator driver and free-electron laser sources to meet those requirements.

 
TH4PBC02 Recent Developments at Diamond Light Source 3169
 
  • R.P. Walker
    Diamond, Oxfordshire
 
 

Diamond Light Source, the UK's 3rd generation synchrotron light facility, became operational in 2007. We report here on a number of important recent developments, aimed at increasing its operational performance. In particular, we present our initial experience with regular top-up injection, which began at the end of October 2008, including its reliability and effect on beam stability. We also discuss the issues that have been faced in increasing the beam current to its design value of 300 mA. Diamond currently operates with 10 in-vacuum undulators with a specified initial minimum operating gap of 7 mm. We report on our efforts to understand and control the distribution of beam losses in the ring, in order to allow operation with gaps as small as the target value of 5 mm.


On behalf of the Diamond Machine Staff

 

slides icon

Slides