Paper | Title | Page |
---|---|---|
FR5RFP008 | Optimization and Single-Shot Characterization of Ultrashort THz Pulses from a Laser Plasma Accelerator | 4548 |
|
||
Funding: This work supported by DARPA and US DoE Office of High Energy Physics under contract DE-AC02-05CH11231. Ultrashort terahertz pulses with energies in the μJ range can be generated with laser wakefield accelerators (LWFA), which produce ultrashort electron bunches with energies up to 1 GeV* and energy spreads of a few-percent. At the plasma-vacuum interface these ultrashort bunches emit coherent transition radiation (CTR) in a wide bandwidth (~ 1 - 10 THz) yielding terahertz pulses of high intensity**,***. In addition to providing a non-invasive bunch-length diagnostic**** and thus feedback for the LWFA, these high peak power THz pulses are suitable for high field (MV/cm) pump-probe experiments. Maximizing the radiated energy was done by controlling the THz mode quality and by optimizing both the energy and the charge of the electron bunches via pre-pulse control on the driver beam. Here we present the study of three different techniques for pre-pulse control and we demonstrate the production of μJ-class THz pulses using energy-based and single-shot electro-optic measurements. *W.P. Leemans et al., Nature Physics 2, 696 (2006) |