Paper | Title | Page |
---|---|---|
TU6RFP026 | Beam Commissioning of Injection into the LHC | 1590 |
|
||
The LHC injection tests and first turn beam commissioning took place in late summer 2008, after detailed and thorough preparation. The beam commissioning of the downstream sections of the SPS-to-LHC transfer lines and the LHC injection systems is described. The details of the aperture measurements in the injection regions are presented together with the performance of the injection related equipment. The measured injection stability is compared to the expectations. The operational issues encountered are discussed. |
||
TU6RFP029 | Experience with the LHC Beam Dump Post-Operational Checks System | 1599 |
|
||
After each beam dump in the LHC automatic post-operational checks are made to guarantee that the last beam dump has been executed correctly and that the system can be declared to be 'as good as new' before the next injection is allowed. The analysis scope comprises the kicker waveforms, redundancy in kicker generator signal paths and different beam instrumentation measurements. This paper describes the implementation and the operational experience of the internal and external post-operational checks of the LHC beam dumping system during the commissioning of the LHC without beam and during the first days of beam operation. |
||
TU6RFP030 | Fast Injection into the PS2 | 1602 |
|
||
The conceptual considerations of a fast injection system for protons and ions in the proposed PS2 accelerator are presented. Initial design parameters of the injection septum and kicker systems are derived, taking into account rise and fall times, apertures and machine optics. The requirements for an injection dump used for failures are described. Possible limitations and technical issues are outlined. |
||
TU6RFP031 | LHC Beam Dump System - Consequences of Abnormal Operation | 1605 |
|
||
The LHC beam dump system is one of the most critical systems concerning machine protection and safe operation. It is used to dispose of high intensity beams between 450 GeV and 7 TeV. Studies into the consequences of abnormal beam dump actions have been performed. Different error scenarios have been evaluated using particle tracking in MAD-X, including an asynchronous dump action, and the impact of different orbit and collimator settings. Losses at locations in the ring and the beam dump transfer lines have been quantified as a function of different settings of the dump system protection elements. The implications for the setting up and operation of these protection elements are discussed. |
||
TU6RFP024 | Initial Results from Beam Commissioning of the LHC Beam Dump System | 1584 |
|
||
Initial commissioning of the LHC beam dump system with beam took place in August and September 2008. The preparation, setting-up and the tests performed are described together with results of the extractions of beam into the dump lines. Analysis of the first detailed aperture measurements of extraction channels and kicker performance derived from dilution sweep shapes are presented. The performance of the other equipment subsystems is summarised, in particular that of the dedicated dump system beam instrumentation. |
||
TH6PFP040 | Machine Studies During Beam Commissioning of the SPS-to-LHC Transfer Lines | 3793 |
|
||
Funding: Work partly supported by Fermilab, operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy Through May to September 2008, further beam commissioning of the SPS to LHC transfer lines was performed. For the first time, optics and dispersion measurements were also taken in the last part of the lines, and into the LHC. Extensive trajectory and optics studies were conducted, in parallel with hardware checks. In particular dispersion measurements and their comparison with the beam line model were analysed in detail and led to propose the addition of a “dispersion-free” steering algorithm in the existing trajectory correction program. |