A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Tzoufras, M.

Paper Title Page
WE6RFP097 Simulations of 25 GeV PWFA Sections: Path Towards a PWFA Linear Collider 3025
 
  • C. Huang, W. An, C.E. Clayton, C. Joshi, W. Lu, K.A. Marsh, W.B. Mori, M. Tzoufras
    UCLA, Los Angeles, California
  • I. Blumenfeld, M.J. Hogan, N.A. Kirby, T.O. Raubenheimer, A. Seryi
    SLAC, Menlo Park, California
  • T.C. Katsouleas
    Duke University, Durham, North Carolina
  • P. Muggli
    USC, Los Angeles, California
 
 

Funding: Work supported by DOE under contracts DE-FG03-92ER40727, DE-FG52-06NA26195, DE-FC02-07ER41500, DE-FG02-03ER54721.


Recent Plasma Wake-Field Acceleration (PWFA) experiments at Stanford Linear Accelerator Center has demonstrated electron acceleration from 42GeV to 84GeV in less than one meter long plasma section. The accelerating gradient is above 50GeV/m, which is three orders of magnitude higher than those in current state-of-art RF linac. Further experiments are also planned with the goal of achieving acceleration of a witness bunch with high efficiency and good quality. Such PWFA sections with 25 GeV energy gain will be the building blocks for a staged TeV electron-positron linear collider concept based on PWFA (PWFA-LC). We conduct Particle-In-Cell simulations of these PWFA sections at both the initial and final witness beam energies. Different design options, such as Gaussian and shaped bunch profiles, self-ionized and pre-ionized plasmas, optimal bunch separation and plasma density are explored. Theoretical analysis of the beam-loading* in the blow-out regime of PWFA and simulation results show that highly efficient PWFA stages are possible. The simulation needs, code developments and preliminary simulation results for future collider parameters will be discussed.


*M. Tzoufras et al, Phys. Rev. Lett. {10}1, 145002 (2008).