Paper | Title | Page |
---|---|---|
FR5REP108 | EMMA Diagnostic Line | 5026 |
|
||
EMMA (Electron Machine with Many Applications) is a prototype non-scaling electron FFAG to be hosted at Daresbury Laboratory. NS-FFAGs related to EMMA have an unprecedented potential for medical accelerators for carbon and proton hadron therapy. It also represents a possible active element for an ADSR (Accelerator Driven Sub-critical Reactor). This paper will summarize the design of the extraction / diagnostic transfer line of the NS-FFAG. In order to operate EMMA, the energy recovery linac ALICE shall be used as injector and the energy will range from 10 to 20 MeV. Because this would be the first non-scaling FFAG, it is important that as many of the bunch properties are studied as feasible, both at injection and at extraction. To do this, a complete diagnostic line was designed consisting of a tomography module together with several other diagnostic devices including the possibility of using a transverse deflecting cavity. Details of the diagnostics are also presented. |
||
FR5REP109 | EMMA Commissioning | 5029 |
|
||
EMMA (Electron Machine with Many Applications) is a prototype non-scaling electron FFAG to be hosted at Daresbury Laboratory. NS-FFAGs related to EMMA have an unprecedented potential for medical accelerators for carbon and proton hadron therapy. It also represents a possible active element for an ADSR (Accelerator Driven Sub-critical Reactor). This paper summarises the commissioning plans for this machine together with the major steps and experiments involved along the way. A description of how the 10 to 20 MeV beam is achieved within ALICE is also given, as well as extraction from the EMMA ring to the diagnostics line and then dump. |
||
TH4GAC03 | PAMELA Overview: Design Goals and Principles | 3142 |
|
||
Funding: EPSRC EP/E032869/1 The PAMELA (Particle Accelerator for MEdicaL Applications) project is to design an accelerator for proton and light ion therapy using non-scaling Fixed Field Alternating Gradient (FFAG) accelerators, as part of the CONFORM project, which is also constructing the EMMA electron model of a non-scaling FFAG at Daresbury. This paper presents an overview of the PAMELA design, and a discussion of the design goals and the principles used to arrive at a preliminary specification of the accelerator. |
||
|