Paper | Title | Page |
---|---|---|
MO4GRI01 | High Power Fast Ramping Power Supplies | 112 |
|
||
Hundred megawatt level fast ramping power converters to drive proton and heavy ion machines are under research and development at accelerator facilities in the world. This is a leading edge technology. There are several topologies to achieve this power level. Their advantages and related issues will be discussed. |
||
|
||
MO4RAC04 | First Polarized Proton Collisions at a Beam Energy of 250 GeV in RHIC | 91 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. After having provided collisions of polarized protons at a beam energy of 100 GeV since 2001, the Relativistic Heavy Ion Collider~(RHIC) at BNL reached its design energy of polarized proton collision at 250 GeV. With the help of the two full Siberian snakes in each ring as well as careful orbit correction and working point control, polarization was preserved during acceleration from injection to 250~GeV. During the course of the Physics data taking, the spin rotators on either side of the experiments of STAR and PHENIX were set up to provide collisions with longitudinal polarization at both experiments. Various techniques to increase luminosity like further beta star squeeze and RF system upgrades as well as gymnastics to shorten the bunch length at store were also explored during the run. This paper reports the performance of the run as well as the plan for future performance improvement in RHIC. |
||
|
||
TU5RFP006 | Beam Transport and Diagnostics for the NSLS-II Injection System | 1096 |
|
||
The NSLS II is a state of the art 3 GeV synchrotron light source being developed at BNL. The injection system will consist of a 200 MeV linac and a 3GeVbooster synchrotron. The transport lines between the linac and booster (LtB) and the booster and storage ring (BtS) must satify a number of requirements. In addition to transporting the beam while mantaining the beam emittance, these lines must allow for commissioning, provide appropriate diagnostics, allow for the appropriate safety devices and and in the case of the BtS line, provide for a stable beam for top off injection. Appropriate diagnostics are also necessary in the linac and booster to complement the measurements in the transfer lines. In this paper we discuss the design of the transfer lines for the NSLSII along with the incorporated diagnostics and safety systems. Necessary diagnostics in the linac and booster are also discussed. |
||
WE6PFP009 | RHIC Low Energy Tests and Initial Operations | 2498 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. There is significant interest in RHIC heavy ion collisions at center of mass energies of 5-50 GeV/u, motivated by a search for the QCD phase transition critical point. The low end of this energy range is nearly a factor of four below the nominal RHIC injection center of mass energy of 19.6 GeV/u. There are several operational challenges in the low-energy regime, including harmonic number changes, longitudinal acceptance, magnet field quality, lattice control, and luminosity monitoring. We report on the results of beam tests with protons and gold in 2007–9, including first RHIC operations at √{(sNN)=9.2} GeV and low-energy nonlinear field corrections at √{(sNN)=5} GeV. |
||
WE6PFP062 | MeRHIC – Staging Approach to eRHIC | 2643 |
|
||
Funding: Work performed under US DOE contract DE-AC02-98CH1-886 Design of a medium energy electron-ion collider (MEeIC) is under development at Collider-Accelerator Department, BNL. The design envisions a construction of 4 GeV electron accelerator in a local area inside the RHIC tunnel. The electrons will be produced by a polarized electron source and accelerated in the energy recovery linac. Collisions of the electron beam with 100 GeV/u heavy ions or with 250 GeV polarized protons will be arranged in the existing IP2 interaction region of RHIC. The luminosity of electron-proton collisions at 1032 cm-2 s-1 level will be achieved with 40 mA CW electron current with presently available parameters of the proton beam. Efficient cooling of proton beam at the collision energy may bring the luminosity to 1033 cm-2 s-1 level. The important feature of the MEeIC is that it would serve as first stage of eRHIC, a future electron-ion collider at BNL with both higher luminosity and energy reach. The majority of the MEeIC accelerator components will be used for eRHIC. |
||
TH6PFP014 | The Booster to AGS Transfer Line: Comparison between Model and Measurements | 3726 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The Booster to AGS (BtA) transfer line was designed to match both ions and protons into the AGS lattice. For proton beam operation the only constraint on the optics is to define a match to the AGS lattice. For ions operation there are constraints introduced by a stripping foil in the upstream part of the transfer line. For polarized proton operation there is the complication that the lattice to match into in the AGS is distorted by the presence of two partial snake magnets. In the 2008 polarized proton run it was observed that there was an optical injection mismatch. Beam experiments were conducted that showed disagreement with the model. In addition, these studies revealed some minor problems with the instrumentation in the line. A new model and more reliable measurements of the transfer line magnet currents have been implemented. Another series of experiments were conducted to test these modifications and to collect a more complete set of data to allow better understanding of the beam dynamics during the transfer and better understanding of the instrumentation. In this paper we will present the results of these experiments and comparison to the new model of the BtA. |
||
FR1GRC04 | AGS Polarized Proton Operation in Run 2009 | 4251 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. After installation of two partial snakes in the Brookhaven Alternating Gradient Synchrotron (AGS), a polarized proton beam with 1.5*1011 intensity and 65% polarization has been achieved. There are residual polarization losses due to horizontal resonances over the whole energy ramp and some polarization loss due to vertical intrinsic resonances. Many efforts have been put in to reduce the emittances coming into the AGS and to consequently reduce polarization loss. This paper presents the accelerator setup and preliminary results from run-9 operations. |
||
|