A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Togashi, T.

Paper Title Page
TU6PFP091 Performance of the Bump System for the Painting Injection at J-PARC 1507
 
  • T. Takayanagi, H. Harada, H. Hotchi, Y. Irie, J. Kamiya, M. Kinsho, P.K. Saha, T. Togashi, T. Ueno, M. Watanabe, M. Yoshimoto
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • K. Satou
    J-PARC, KEK & JAEA, Ibaraki-ken
 
 

The painting injection of the 3-GeV RCS in J-PARC has been tested since May in 2008. The shift bump-magnets, which give a constant bump field in a horizontal plane during injection, comprise four magnets connected in series. However, the total integrated magnetic field over the four magnets is not zero because of the magnetic field interferences with the neighboring quadrupole magnets. So the gap of each magnet was adjusted by inserting thin insulators into the splitting plane of the side yoke so that the field integration becomes zero. The thickness was determined experimentally. The closed orbit distortion due to the field imbalances was then confirmed to be less than 1 mm. Another four paint bump-magnets are also necessary to give time-dependent fields. They are connected to their own power supplies, separately. The excitation of each magnet is calibrated by using the beam so that the created bump orbit satisfies the position and inclination at the injection point, and there are no orbit distortions outside the injection area. As for a vertical plane, a vertical paint magnet is located pi-radian upstream of the injection point to control the vertical angle of the beam.

 
TU6RFP083 Measurement Results of the Characteristic of the Pulse Power Supply for the Injection Bump System in J-PARC 3-GeV RCS 1742
 
  • T. Takayanagi, Y. Irie, J. Kamiya, M. Kinsho, T. Togashi, T. Ueno, M. Watanabe, M. Yoshimoto
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
 
 

The main circuit of the switching power supplies for the injection bump system is composed of multiple-connection of the IGBT assemblies. The element of the IGBT assembly, which is the power supply of the shift bump-magnets, is a type of 3300V-1200A and 6 kHz in elementary frequency. The power supply has the output performance of 20 kA / 6.6 kV. The synthetic frequency of the multiple-connection assemblies is over 48 kHz and the tracking error less than 1 % is proved. The beam commissioning test of long-term operation for about three-week was performed. The deviation of the exciting current from the programmed current pattern has been confirmed less than 1%. The peculiar characteristic of the pulse power supply has been obtained by the analysis on the frequency response of the exciting current and the magnetic field. In the FFT analytical result of the magnetic field, the peaks of 48 kHz and its higher harmonics that are related to the switching frequency was observed. The ground loop current and the voltage were also measured.

 
TU6PFP090 High-Intensity Demonstrations in the J-PARC 3-GeV RCS 1504
 
  • H. Hotchi, N. Hayashi, Y. Hikichi, S. Hiroki, J. Kamiya, K. Kanazawa, M. Kawase, M. Kinsho, M. Nomura, N. Ogiwara, R. Saeki, P.K. Saha, A. Schnase, T. Shimada, Y. Shobuda, K. Suganuma, H. Suzuki, H. Takahashi, T. Takayanagi, O. Takeda, F. Tamura, N. Tani, T. Togashi, T. Ueno, M. Watanabe, Y. Watanabe, K. Yamamoto, M. Yamamoto, Y. Yamazaki, H. Yoshikawa, M. Yoshimoto
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • A. Ando
    LASTI, Hyogo
  • H. Harada
    Hiroshima University, Graduate School of Science, Higashi-Hiroshima
  • K. Hasegawa, Y. Irie, C. Ohmori, M. Yoshii
    KEK, Ibaraki
  • K. Satou, Y. Yamazaki
    J-PARC, KEK & JAEA, Ibaraki-ken
 
 

The beam commissioning of the J-PARC 3-GeV RCS started in October 2007. The initial machine parameter tuning and underlying beam studies were completed in February 2008 through various beam dynamics measurements, such as optical functions, turn-by-turn beam positions, and transverse and logitudinal beam profiles. Now the RCS is in transition from the first commissioning phase to the next challenging stage and our efforts hereafter will be focused on higher beam power operations. In this paper, we describe experimental results obtained in the high intensity demonstrations in October 2008, together with the corresponding simulation results.

 
TH3PBI02 Progress of the SCSS Test Accelerator for XFEL/SPring-8 3120
 
  • K. Togawa, T. Fukui, T. Hara, T. Hasegawa, A. Higashiya, N. Hosoda, T. Inagaki, S.I. Inoue, T. Ishikawa, H. Kitamura, M.K. Kitamura, H. Maesaka, M. Nagasono, T. Ohshima, Y. Otake, T. Sakurai, T. Shintake, K. Shirasawa, K. Tamasaku, H. Tanaka, T. Tanaka, M. Yabashi
    RIKEN/SPring-8, Hyogo
  • T. Asaka, H. Ohashi, S. Takahashi, S. Tanaka, T. Togashi
    JASRI/SPring-8, Hyogo-ken
 
 

The SPring-8 compact SASE source (SCSS) test accelerator was constructed in FY2005 to demonstrate a new concept for X-ray free electron lasers composed of a low-emittance thermionic electron injector, a high-gradient normal conducting C-band accelerator, and a short-period in-vacuum undulator. With a 250 MeV electron beam, continuous SASE saturation can generate intense and stable FEL beams at the wavelength range from 50 to 60 nm with the maximum pulse energy of 30 micro-J and the intensity fluctuation of ~10%. Analysis of the SASE saturation data with a 3D-FEL simulation code suggests negligible degradation of the electron beam emittance during the high bunch compression process. We also succeeded in operating the C-band accelerator with a high accelerating gradient of 37 MV/m and a repetition rate of 60 pps. Now, the FEL beam is routinely delivered for user experiments. At this conference we will present the machine performance and recent progress of the SCSS test accelerator together with the anticipated performance of the 8 GeV XFEL under construction.

 

slides icon

Slides