Paper | Title | Page |
---|---|---|
TU3PBI02 | Linac Code Benchmarking with High Intensity Experiments at the UNILAC | 719 |
|
||
Funding: We acknowledge the support of the European Community-Research Infrastructure Activity under the FP6 ‘‘Structuring the European Research Area’’ program (CARE, Contract No. RII3-CT-2003-506395). Beam dynamics experiments with high intensity beams have been conducted at the GSI UNILAC in 2006-2008 with the goal of benchmarking four major simulation codes, i.e. DYNAMION, PARMILA, TraceWin/PARTRAN and LORASR with respect to transverse emittance growth along a DTL. The experiments comprised measurements of transverse phase space distributions in front of as well as behind the DTL. Additional longitudinal bunch length measurements at the DTL entrance allowed for estimate and control of mismatch in all three planes. Measured effects of mismatch and of theoretically predicted space charge resonances (equipartitioning and others) are compared with simulations for a wide range of transverse phase advance along the DTL. This contribution is the first report on the successful measurement of a space charge driven fourth order resonance in a linear accelerator. |
||
|
||
FR5REP060 | Prototype Construction of a Coupled CH-DTL Proton Linac for FAIR | 4908 |
|
||
For the research program with cooled antiprotons at FAIR a dedicated 70MeV, 70mA proton injector is needed. The main acceleration of this room temperature injector will be provided by six coupled CH-cavities operated at 325MHz. Each cavity will be powered by a 3 MW klystron (6 in total). For the second acceleration unit from 11.7 to 24.3 MeV measurements on a 1:2 scaled model are performed. This tank is now ready for construction and will be used for RF power tests at GSI. The RF power test installations are underway. This paper presents the CH-DTL design and especially the status of the first power cavity. |