A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Tawada, M.

Paper Title Page
MO6PFP019 Development of Pulsed Bending Magnet for Simultaneous Top-Up Injection to KEKB and PF Ring 175
 
  • M. Tawada, M. Kikuchi, T. Mimashi, S. Nagahashi, A. Ueda
    KEK, Ibaraki
 
 

KEKB linac is a 600 m long electron linac and is used to deliver beam to four rings, KEKB HER ring (electron, 8 GeV), KEKB LER ring (positron, 3.5 GeV),PF ring (electron, 2.5 GeV) and PF-AR ring (electron, 6.5 GeV). KEKB rings are operated under top-up injection mode and have occupied the current linac operation mostly. Simultaneous injection to three rings (KEKB HER and KEKB LER and PF) is required due to the top-up injection to PF ring is required recently. We have developed the pulsed bending magnet for this. This magnet produces 114 mrad deflection angle for 2.5 GeV PF beam. The fast switching between KEKB and PF can be performed up to 25 Hz. We will describe this magnet system in detail.

 
MO6PFP020 Design Study of Superconducting Final Focus Quadrupoles for the SuperKEKB Interaction Region 178
 
  • M. Tawada, Y. Funakoshi, H. Koiso, N. Ohuchi, K. Oide, K. Tsuchiya
    KEK, Ibaraki
 
 

KEK is studying the design of the superconducting final focus quadrupoles for the Super KEKB. The system consists of quadrupole-doublet cooled at 1.9 K. The vertical focusing quadrupole has the maximum magnetic field more than 8 T in the superconducting coils. The field gradient at the magnet center is more than 80 T/m and the effective magnetic length is 0.25 m. The horizontal focusing quadrupole is designed with the field gradient of 9.5 T/m and the effective magnetic length of 1.0 m. These magnet parameters will be iterated in the process of optimizing the beam optics. In this paper, the conceptual design of final focusing system and magnets will be reported.

 
MO6PFP018 The Pulsed Magnet System for the Simultaneous Injection of KEK-PF and KEKB Ring 172
 
  • T. Mimashi, K. Furukawa, N. Iida, K. Kakihara, M. Kikuchi, T. Miyajima, S. Nagahashi, M. Sato, M. Tawada, A. Ueda
    KEK, Ibaraki
  • N. Ishii
    Tigold, Chiba 289-1226
  • K. Iwamoto
    KFG, NEUSS
  • S. Kodama, A. Sasagawa
    KYOCERA Corporation, Higashiomi-city, Shiga
  • T. Kudo
    MELCO SC, Tsukuba
  • H. Mori
    Nichicon (Kusatsu) Corporation, Shiga
 
 

The KEK Linac delivers the beam to KEK-Photon factory storage ring, KEKB ring and the advanced ring for photon factory. In order to deliver the beam to the KEK-photon factory and KEKB ring simultaneously, the pulsed bending magnet was installed at the end of KEKB Linac. The pulsed bending magnet extract 2.5GeV electron beam to the PF beam transfer line. The deflection angle of the magnet is 0.114 radians and the field strength is almost 1.22T. The peak current stability is better than 0.1% at 24kA operation. The maximum repetition rate is 25Hz. The 1.2m long ceramic chamber is inserted into the 1m long magnet. This system makes possible the top up operation of PF ring.

 
WE6PFP046 Variations in Beam Phase and Related Issues Observed in KEKB 2595
 
  • T. Ieiri, K. Akai, M. Tawada, M. Tobiyama
    KEK, Ibaraki
 
 

KEKB is a multi-bunch, high-current electron-positron collider. Newly installed crab cavities realized an effective head-on collision, while maintaining finite-angle crossing orbits. Bunches form a single train followed by a beam abort gap. We observed a beam phase advancing along a train due to transient beam loading. Since there is a difference in the beam phase between the two beams, a longitudinal displacement of the collision vertex is expected under the crabbing collision. Estimated variations agree with those detected by the Belle*. A displacement in the horizontal beam position was observed in correspondence with the variations in the beam phase. We found that the horizontal displacement was caused by a transverse kick of the crab cavities to phase-shifted bunches. Moreover, a rapid phase advancing was observed at the leading part in a train in the LER. We suspect that some longitudinal wakes with low Q values in accelerator components might contribute to the rapid change in the beam phase.


*H. Kichimi et al., to be published.

 
TU5RFP081 Status of the Energy Recovery Linac Project in Japan 1278
 
  • S. Sakanaka, M. Akemoto, T. Aoto, D.A. Arakawa, A. Enomoto, S. Fukuda, K. Furukawa, T. Furuya, K. Haga, K. Hara, K. Harada, T. Honda, Y. Honda, H. Honma, T. Honma, K. Hosoyama, M. Isawa, E. Kako, T. Kasuga, H. Kawata, M. Kikuchi, Y. Kobayashi, Y. Kojima, T. Matsumoto, H. Matsushita, S. Michizono, T.M. Mitsuhashi, T. Miura, T. Miyajima, T. Muto, S. Nagahashi, T. Naito, H. Nakai, H. Nakajima, E. Nakamura, K. Nakanishi, T. Nogami, S. Noguchi, T. Obina, S. Ohsawa, T. Ozaki, S. Sasaki, K. Satoh, M. Satoh, T. Shidara, M. Shimada, T. Shioya, T. Shishido, T. Suwada, T. Takahashi, R. Takai, Y. Tanimoto, M. Tawada, M. Tobiyama, K. Tsuchiya, T. Uchiyama, K. Umemori, K. Watanabe, M. Yamamoto, S. Yamamoto, Y. Yamamoto
    KEK, Ibaraki
  • R. Hajima, H. Iijima, N. Kikuzawa, E.J. Minehara, R. Nagai, N. Nishimori, M. Sawamura
    JAEA/ERL, Ibaraki
  • H. Hanaki
    JASRI/SPring-8, Hyogo-ken
  • A. Ishii, I. Ito, T. Kawasaki, H. Kudo, N. Nakamura, H. Sakai, S. Shibuya, K. Shinoe, T. Shiraga, H. Takaki
    ISSP/SRL, Chiba
  • M. Katoh
    UVSOR, Okazaki
  • M. Kuriki
    HU/AdSM, Higashi-Hiroshima
  • S. Matsuba
    Hiroshima University, Graduate School of Science, Higashi-Hiroshima
  • K. Torizuka, D. Yoshitomi
    AIST, Tsukuba
 
 

Future synchrotron light source project using an energy recovery linac (ERL) is under proposal at the High Energy Accelerator Research Organization (KEK) in collaboration with several Japanese institutes such as the JAEA and the ISSP. We are on the way to develop such key technologies as the super-brilliant DC photo-injector and superconducting cavities that are suitable for both CW and high-current operations. We are also promoting the construction of the Compact ERL for demonstrating such key technologies. We report the latest status of our project, including update results from our photo-injector and from both superconducting cavities for the injector and the main linac, as well as the progress in the design and preparations for constructing the Compact ERL.

 
WE6PFP043 Recent Progress of KEKB 2588
 
  • Y. Funakoshi, T. Abe, K. Akai, Y. Cai, K. Ebihara, K. Egawa, A. Enomoto, J.W. Flanagan, H. Fukuma, K. Furukawa, T. Furuya, J. Haba, T. Ieiri, N. Iida, H. Ikeda, T. Kageyama, S. Kamada, T. Kamitani, S. Kato, M. Kikuchi, E. Kikutani, H. Koiso, M. Masuzawa, T. Mimashi, T. Miura, A. Morita, T.T. Nakamura, K. Nakanishi, M. Nishiwaki, Y. Ogawa, K. Ohmi, Y. Ohnishi, N. Ohuchi, K. Oide, M. Ono, Y. Seimiya, K. Shibata, M. Suetake, Y. Suetsugu, T. Sugimura, T. Suwada, M. Tawada, M. Tejima, M. Tobiyama, N. Tokuda, S. Uehara, S. Uno, Y. Yamamoto, Y. Yano, K. Yokoyama, M. Yoshida, S.I. Yoshimoto, D.M. Zhou
    KEK, Ibaraki
 
 

Crab cavities were installed at KEKB at the beginning of 2007. The beam operation with the crab cavities is in progress. In this paper, machine performance with crab crossing is described focusing on a specific luminosity and a beam lifetime issue related to the dynamic beam-beam effects.

 
WE6PFP110 Pulse-to-Pulse Switching Injection to Three Rings of Different Energies from a Single Electron Linac at KEK 2769
 
  • N. Iida, K. Furukawa, M. Ikeda, T. Kamitani, M. Kikuchi, E. Kikutani, Y. Kobayashi, T. Mimashi, T.M. Mitsuhashi, T. Miura, Y. Ogawa, Y. Ohnishi, S. Ohsawa, M. Satoh, M. Suetake, T. Suwada, M. Tawada, A. Ueda, Y. Yano, K. Yokoyama, M. Yoshida
    KEK, Ibaraki
 
 

The e+/e- injector LINAC in KEK usually successively injects into four rings, which are Low Energy Ring (LER) of KEKB (3.5GeV/e+), High Energy Ring (HER) of KEKB (8.0GeV/e-), Photon Factory (PF) (2.5GeV/e-) and Advanced Ring for pulse X-rays (PF-AR) (3.0GeV/e-). While LINAC continuously injects into LER and HER alternatively every about five minutes, keeping both of KEKB rings almost their full operating currents. It takes about one minute to switch beam mode of LINAC. PF and PF-AR are injected a few times in a day. Time for PF or PF-AR including mode-switch had taken about 20 minutes for each other. For PF injection, the switching time was shortened in 2005 and the occupancy time is about 5 minutes. In 2008, we succeeded to make the switching time shorter, 2 seconds for HER/LER, and Pulse-to-pulse alternatively injection for PF/HER using an event system. Especially for KEKB, the short switching time is contributed to provide high currents and to improve luminosity at which beam lives are too short to keep the high currents. In 2009, we have a plan to inject also for LER/HER pulse-to-pulse alternatively.