A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Tauchi, T.

Paper Title Page
MO6PFP024 Permanent Magnet Final Focus Doublet R&D for ILC at ATF2 187
 
  • Y. Iwashita, T. Sugimoto
    Kyoto ICR, Uji, Kyoto
  • M. Masuzawa, T. Tauchi, K. Yokoya
    KEK, Ibaraki
 
 

Funding: Work partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research (A), 18204023(2006)


Although the base line technology of the Final Focus Doublet for ILC is superconducting magnet, which is supposed to be conventional, the slender structure may be suffered from its vibration. The permanent magnets, however, do not have any vibration source in it at the steady state. The five-ring-singlet configuration, proposed by R. L. Gluckstern adds 100% strength adjustability to permanent magnet quadrupole (PMQ) lens. A prototype of this lens is fabricated and under evaluation. It was originally designed for ILC that also has the extra hole for the outgoing beam. In order to realize the beam test at ATF2, the inner bore is enlarged from D20mm to D50mm to clear the background photons from Shintake-Monitor. The magnet is described.

 
MO6PFP044 Superconducting Magnets for a Final Focus Upgrade of ATF2 235
 
  • B. Parker, M. Anerella, J. Escallier, P. He, A.K. Jain, A. Marone
    BNL, Upton, Long Island, New York
  • B. Bolzon, A. Jeremie
    IN2P3-LAPP, Annecy-le-Vieux
  • P.A. Coe, D. Urner
    OXFORDphysics, Oxford, Oxon
  • C. Hauviller
    CERN, Geneva
  • A. Seryi
    SLAC, Menlo Park, California
  • T. Tauchi, K. Tsuchiya, J. Urakawa
    KEK, Ibaraki
 
 

Funding: Work supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.


The Accelerator Test Facility (ATF2) at KEK is a scaled down version of the final focus design proposed for the future linear colliders (LC) and aims to experimentally verify the final focus (FF) technology needed to obtain very small, stable beam spots at a LC interaction point. Initially the ATF2 FF is made using conventional (warm) quadrupole and sextupole magnets; however, we propose to upgrade the FF by replacing some of the conventional magnets with new superconducting magnets constructed with the same technology as those of the International Linear Collider baseline FF magnets*. With the superconducting magnet upgrade we can look to achieve smaller interaction point beta-functions and to study superconducting magnet vibration stability in an accelerator environment. Therefore for the ATF2 R&D magnet we endeavor to incorporate cryostat design features that facilitate monitoring of the cold mass movement via interferometric techniques. The design status of the ATF2 superconducting upgrade magnets is reported in this paper.


*International Linear Collider Reference Design Report, ILC-REPORT-2007-001, August 2007.

 
WE6PFP078 Functional Requirements on the Design of the Detectors and the Interaction Region of an e+e- Linear Collider with a Push-Pull Arrangement of Detectors 2679
 
  • T.W. Markiewicz, M. Oriunno, A. Seryi
    SLAC, Menlo Park, California
  • K. Buesser
    DESY, Hamburg
  • P. Burrows
    OXFORDphysics, Oxford, Oxon
  • J.M. Hauptman
    ISU, Ames
  • A.A. Mikhailichenko
    CLASSE, Ithaca, New York
  • B. Parker
    BNL, Upton, Long Island, New York
  • T. Tauchi
    KEK, Ibaraki
 
 

Funding: Work supported in part by US DOE contract DE-AC02-76-SF00515.


The Interaction Region of the International Linear Collider* is based on two experimental detectors working in a push-pull mode. A time efficient implementation of this model sets specific requirements and challenges for many detector and machine systems, in particular the IR magnets, the cryogenics and the alignment system, the beamline shielding, the detector design and the overall integration. This paper attempts to separate the functional requirements of a push pull interaction region and machine detector interface from the conceptual and technical solutions being proposed by the ILC Beam Delivery Group and the three detector concepts**. As such, we hope that it provides a set of ground rules for interpreting and evaluation the MDI parts of the proposed detector concept’s Letters of Intent, due March 2009. The authors of the present paper are the leaders of the IR Integration Working Group within Global Design Effort Beam Delivery System and the representatives from each detector concept submitting the Letters Of Intent.


*ILC Reference Design Report, ILC-Report-2007-01.
**Materials of IR Engineering Design Workshop, 2007, http://www-conf.slac.stanford.edu/ireng07

 
WE6PFP024 ATF2 Ultra-Low IP Betas Proposal 2540
 
  • R. Tomás, H.-H. Braun, J.-P. Delahaye, A. Marin, D. Schulte, F. Zimmermann
    CERN, Geneva
  • D. Angal-Kalinin, J.K. Jones
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • S. Bai, J. Gao, X.W. Zhu
    IHEP Beijing, Beijing
  • P. Bambade, M. Renier
    LAL, Orsay
  • Y. Honda, S. Kuroda, T. Okugi, T. Tauchi, N. Terunuma, J. Urakawa
    KEK, Ibaraki
  • A. Scarfe
    UMAN, Manchester
  • A. Seryi, G.R. White, M. Woodley
    SLAC, Menlo Park, California
 
 

The CLIC Final Focus System has considerably larger chromaticity than those of ILC and its scaled test machine ATF2. We propose to reduce the IP betas of ATF2 to reach a CLIC-like chromaticity. This would also allow to study the FFS tuning difficulty as function of the IP beam spot size. Both the ILC and CLIC projects will largely benefit from the ATF2 experience at these ultra-low IP betas.

 
TH6REP062 Status of the First Commissioning of the Shintake Monitor for ATF2 4093
 
  • T. Yamanaka, S. Komamiya, M. Oroku, T.S. Suehara
    University of Tokyo, Tokyo
  • S. Araki, Y. Honda, T. Kume, T. Okugi, T. Tauchi, N. Terunuma, J. Urakawa
    KEK, Ibaraki
  • Y. Kamiya
    ICEPP, Tokyo
 
 

Commissioning of the ATF/ATF2 project will start in the winter of 2008 to 2009, with the aim of studying beam optics, diagnostic instrumentations, and tuning processes for around 35 nm beam size. The project is the realistic scaled down model of the ILC final focus system, and also, studies in the project offered important findings for future accelerator physics. In this presentation, we will present about the status of the first commissioning of the Shintake monitor for ATF2. The monitor is located at the virtual interaction point of the ATF2 (the focus point) to measure beam size. A measurable ranges as a design are from 6 micron down to 20 nm in vertical and down to several microns in horizontal. That wide range allows us to used the detector from the beginning of the beam tuning process. The monitor scheme was originally proposed by T. Shintake and verified using around 60 nm beam at FFTB project. We upgraded the detector system for ATF2 of smaller beam size and implemented a laser wire scheme for horizontal beam size measurement. These additional capabilities are also presented.

 
TH5RFP070 Nanometer Resolution Beam Position Monitor for the ATF2 Interaction Point Region 3603
 
  • A. Heo, E.-S. Kim, H.-S. Kim
    Kyungpook National University, Daegu
  • R. Ainsworth, S.T. Boogert, G.E. Boorman
    Royal Holloway, University of London, Surrey
  • Y. Honda, T. Tauchi, N. Terunuma
    KEK, Ibaraki
  • S.H. Kim, Y.J. Park
    PAL, Pohang, Kyungbuk
  • A. Lyapin, B. Maiheu, M. Wing
    UCL, London
  • J. May, D.J. McCormick, S. Molloy, J. Nelson, T.J. Smith, G.R. White
    SLAC, Menlo Park, California
  • S. Shin
    Fermilab, Batavia
  • D. Son
    CHEP, Daegu
  • D.R. Ward
    University of Cambridge, Cambridge
 
 

The ATF2 international collaboration is intending to demonstrate nanometer beam sizes required for the future Linear Colliders. The position of the electron beam focused down at the end of the ATF2 extraction line to a size as small as 35 nm has to be measured with nanometer resolution. For that purpose a special Interaction Point(IP) beam position monitor (BPM) was designed. In this paper we report on the features of the BPM and electronics design providing the required resolution. We also consider the results obtained with BPM triplet which was installed in the ATF beamline and the first data from ATF2 commissioning runs.

 
TH5RFP084 Nanometer Order of Stabilization for Precision Beam Size Monitor (Shintake Monitor) 3645
 
  • T. Kume, S. Araki, Y. Honda, T. Okugi, T. Tauchi, N. Terunuma, J. Urakawa
    KEK, Ibaraki
  • B. Bolzon, N. Geffroy, A. Jeremie
    IN2P3-LAPP, Annecy-le-Vieux
  • Y. Kamiya
    ICEPP, Tokyo
  • S. Komamiya, M. Oroku, T.S. Suehara, T. Yamanaka
    University of Tokyo, Tokyo
 
 

The ATF2, accelerator test facility has been developed confirming techniques for obtaining super low emittance beam for future particle accelerators. Here, the converged beam size is designed to be 37 nm, and a precision beam size monitor using interference fringes as a reference called Shintake monitor is used for measuring it. In order to measure the beam size with resolution of better than 10%, relative position between the beam and the interference fringes should be stabilized within few nanometers. Highly rigid tables and mounts for the Shintake monitor and final focusing magnets are adopted with highly rigid floor to ensure relative position stability. Then, the Shintake monitor can be stabilized against the beam, since the beam fluctuates coherently with the final focusing magnets. On the other hand the interference fringes are stabilized against the Shintake monitor with precise phase control system. As a result, relative position between the beam and the interference fringes is stabilized based on rigidity of tables, mounts, and floor between them. We will present our conception for stabilization and results of vibration measurements for the Shintake monitor.

 
TH6REP025 Development of the S-Band BPM System for ATF2 4003
 
  • A. Lyapin, B. Maiheu, M. Wing
    UCL, London
  • R. Ainsworth, A.S. Aryshev, S.T. Boogert, G.E. Boorman, S. Molloy
    Royal Holloway, University of London, Surrey
  • A. Heo, E.-S. Kim, H.-S. Kim
    Kyungpook National University, Daegu
  • Y. Honda, T. Tauchi, N. Terunuma
    KEK, Ibaraki
  • D.J. McCormick, J. Nelson, G.R. White
    SLAC, Menlo Park, California
  • S. Shin
    Fermilab, Batavia
  • D.R. Ward
    University of Cambridge, Cambridge
 
 

The ATF2 international collaboration is intending to demonstrate nanometre beam sizes required for the future Linear Colliders. An essential part of the beam diagnostics needed to achieve this goal is the high resolution cavity beam position monitors (BPMs). In this paper we report on the S-band system installed in the final focus region of the new ATF2 extraction beamline. It only includes 4 BPMs, but they are mounted on the most critical final focus magnets squeezing the beam down to 35 nm. We discuss both the design and the first operational experience with the system.

 
TH6REP028 Development of the C-Band BPM System for ATF2 4009
 
  • S. Molloy, R. Ainsworth, S.T. Boogert, G.E. Boorman
    Royal Holloway, University of London, Surrey
  • A. Heo, E.-S. Kim, H.-S. Kim
    Kyungpook National University, Daegu
  • Y. Honda, T. Tauchi, N. Terunuma
    KEK, Ibaraki
  • A. Lyapin, B. Maiheu, M. Wing
    UCL, London
  • D.J. McCormick, J. Nelson, G.R. White
    SLAC, Menlo Park, California
  • S. Shin
    Fermilab, Batavia
  • D.R. Ward
    University of Cambridge, Cambridge
 
 

The ATF2 international collaboration is intending to demonstrate nanometre beam sizes required for the future Linear Colliders. An essential part of the beam diagnostics needed to achieve that goal is the high resolution cavity beam position monitors (BPMs). In this paper we report on the C-band system consisting of 32 BPMs spread over the whole length of the new ATF2 extraction beamline. We discuss the design of the BPMs and electronics, main features of the DAQ system, and the first operational experience with these BPMs.

 
FR1RAI03 ATF2 Commissioning 4205
 
  • A. Seryi, J.W. Amann, P. Bellomo, B. Lam, D.J. McCormick, J. Nelson, J.M. Paterson, M.T.F. Pivi, T.O. Raubenheimer, C.M. Spencer, M.-H. Wang, G.R. White, W. Wittmer, M. Woodley, Y.T. Yan, F. Zhou
    SLAC, Menlo Park, California
  • D. Angal-Kalinin, J.K. Jones
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • R. Apsimon, B. Constance, C. Perry, J. Resta-López, C. Swinson
    JAI, Oxford
  • S. Araki, A.S. Aryshev, H. Hayano, Y. Honda, K. Kubo, T. Kume, S. Kuroda, M. Masuzawa, T. Naito, T. Okugi, R. Sugahara, T. Tauchi, N. Terunuma, J. Urakawa, K. Yokoya
    KEK, Ibaraki
  • S. Bai, J. Gao
    IHEP Beijing, Beijing
  • P. Bambade, Y. Renier, C. Rimbault
    LAL, Orsay
  • G.A. Blair, S.T. Boogert, V. Karataev, S. Molloy
    Royal Holloway, University of London, Surrey
  • B. Bolzon, N. Geffroy, A. Jeremie
    IN2P3-LAPP, Annecy-le-Vieux
  • P. Burrows
    OXFORDphysics, Oxford, Oxon
  • G.B. Christian
    ATOMKI, Debrecen
  • J.-P. Delahaye, D. Schulte, R. Tomás, F. Zimmermann
    CERN, Geneva
  • E. Elsen
    DESY, Hamburg
  • E. Gianfelice-Wendt, M.C. Ross, M. Wendt
    Fermilab, Batavia
  • A. Heo, E.-S. Kim, H.-S. Kim
    Kyungpook National University, Daegu
  • J.Y. Huang, W.H. Hwang, S.H. Kim, Y.J. Park
    PAL, Pohang, Kyungbuk
  • Y. Iwashita, T. Sugimoto
    Kyoto ICR, Uji, Kyoto
  • Y. Kamiya
    ICEPP, Tokyo
  • S. Komamiya, M. Oroku, T.S. Suehara, T. Yamanaka
    University of Tokyo, Tokyo
  • A. Lyapin
    UCL, London
  • B. Parker
    BNL, Upton, Long Island, New York
  • T. Sanuki
    Tohoku University, Graduate School of Science, Sendai
  • A. Scarfe
    UMAN, Manchester
  • T. Takahashi
    Hiroshima University, Graduate School of Science, Higashi-Hiroshima
  • A. Wolski
    Cockcroft Institute, Warrington, Cheshire
 
 

ATF2 is a final-focus test beam line that attempts to focus the low-emittance beam from the ATF damping ring to a beam size of about 37 nm, and at the same time to demonstrate nm beam stability, using numerous advanced beam diagnostics and feedback tools. The construction is well advanced and beam commissioning of ATF2 has started in the second half of 2008. ATF2 is constructed and commissioned by ATF international collaborations with strong US, Asian and European participation.

 

slides icon

Slides