Paper | Title | Page |
---|---|---|
WE3RAI01 | Progress in High Gradient Accelerator Structure Research for Future Linear Colliders | 1872 |
|
||
This talk will summarize progress towards high-gradient accelerator structures for a future multi-TeV linear collider. The research summarized will include the US high gradient research collaboration and the CLIC research program, and will include recent experimental results of testing a variety of accelerator structures with different frequencies, geometries and materials, and features that allow for wake field damping. The talk also presents the results of specialized material studies geared towards the understanding of surface fatigue limits due to high magnetic fields, and progress on the theory of rf breakdown in high vacuum structures and multipactoring in dielectric loaded structures. |
||
|
||
WE3RAC02 | High-Power Testing of X-Band CLIC Power Generating Structures | 1873 |
|
||
A fundamental element of the CLIC concept is two-beam acceleration, where rf power is extracted from a high-current and low-energy beam in order to accelerate the low-current main beam to high energy. The power extraction occurs in special X-band Power Extraction and Transfer Structures (PETS). The structures are large aperture, high-group velocity and overmoded periodic structures. Following the substantial changes of the CLIC baseline parameters in 2006, the PETS design has been thoroughly updated along with the fabrication methods and corresponding rf components. Two PETS prototypes have been fabricated and high power tested. Test results and future plans are presented. |
||
|
||
WE5PFP018 | Results from the CLIC X-Band Structure Test Program at NLCTA | 2027 |
|
||
Funding: Work supported by the DOE under contract DE-AC02-76SF00515 As part of a SLAC-CERN-KEK collaboration on high gradient X-band structure research, several prototype structures for the CLIC linear collider study have been tested using two of the high power (300 MW) X-band rf stations in the NLCTA facility at SLAC. These structures differ in terms of their manufacturing (brazed disks and clamped quadrants), gradient profile (amount by which the gradient increases along the structure which optimizes efficiency and maximizes sustainable gradient) and HOM damping (use of slots or waveguides to rapidly dissipate dipole mode energy). The CLIC goal in the next few years is to demonstrate the feasibility of a CLIC-ready baseline design and to investigate alternatives which could bring even higher efficiency. This paper summarizes the high gradient test results from the NLCTA in support of this effort. |
||
WE5PFP038 | Studies on the Effect of Coating Nb with Thin Layers of Another Superconductor such as NbN and MgB2 | 2079 |
|
||
Funding: DTRA We are currently testing the effect of coating Nb with a thin layer of another superconductor such as NbN and MgB2. Gurevich’s theory of multi-layered coating predicts an enhancement of the critical magnetic field, giving us hope to increase the achievable accelerating gradient to above 50 MV/m in elliptical cavities. CW test results of 3 GHz Nb single-cell cavities coated with ~100 nm NbN at LANL and 11.4 GHz <1 μs high-power pulsed test results of 2” Nb disk samples coated with ~100 nm MgB2 will be presented. |
||
WE5PFP096 | Damping Effect Studies for X-Band Normal Conducting High Gradient Standing Wave Structures | 2237 |
|
||
Funding: Work supported by the DOE under contract DE-AC02-76SF00515. The Multi-TeV colliders should have the capability to accelerate low emittance beam with high rf efficiency, X-band normal conducting high gradient accelerating structure is one of the promising candidate. However, the long range transverse wake field which can cause beam emittance dilution is one of the critical issues. We examined effectiveness of dipole mode damping in three kinds of X-band, π-mode standing wave structures at 11.424GHz with no detuning considered. They represent three damping schemes: damping with cylindrical iris slot, damping with choke cavity and damping with waveguide coupler. We try to reduce external Q factor below 20 in the first two dipole bands, which usually have very high (RT/Q)T. The effect of damping on the acceleration mode is also discussed. |
||
TU5RFP043 | Design of a 250 MeV, X-Band Photoinjector Linac for a Precision Compton-Scattering Based Gamma-Ray Source | 1186 |
|
||
Funding: This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. We present a compact, X-band, high-brightness accelerator design suitable for driving a precision gamma-ray source. Future applications of gamma-rays generated by Compton-scattering of laser and relativistic electron beams place stringent demands on the brightness and stability of the incident electron beam. This design identifies the beam parameters required for gamma-ray production, including position, and pointing stability. The design uses an emittance compensated, 11.4 GHz photo-gun and linac to generate 400 pC, 1-2 mm-mrad electron bunches at up to 250 MeV and 120 Hz repetition rate. The effects of jitter in the photo-cathode laser and RF power system are analyzed as well as structure and optic misalignments and wakefields. Finally, strategies for the mitigation of on-axis bremsstrahlung noise are discussed. |
||
WE5RFP015 | Concepts for the PEP-X Light Source | 2297 |
|
||
Funding: This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-76SF00515. SSRL and SLAC groups are developing a long-range plan to transfer its evolving scientific programs from the SPEAR3 light source to a much higher performing photon source that would be housed in the 2.2-km PEP-II tunnel. While various concepts for the PEP-X light source are under consideration, including ultimate storage ring and ERL configurations, the present baseline design is a very low-emittance storage ring. A hybrid lattice has DBA or QBA cells in two of the six arcs that provide a total ~30 straight sections for ID beam lines extending into two new experimental halls. The remaining arcs contain TME cells. Using ~100 m of damping wigglers the horizontal emittance at 4.5 GeV would be ~0.1 nm-rad with >1 A stored beam. PEP-X will produce photon beams having brightnesses near 1022 at 10 keV. Studies indicate that a ~100-m undulator could have FEL gain and brightness enhancement at soft x-ray wavelengths with the stored beam. Crab cavities or other beam manipulation systems could be used to reduce bunch length or otherwise enhance photon emission properties. The present status of the PEP-X lattice and beam line designs are presented and other implementation options are discussed. |
||
WE5RFP030 | Development of a Precision Tunable Gamma-Ray Source Driven by a Compact X-Band Linac | 2333 |
|
||
Funding: This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. A precision, tunable gamma-ray source driven by a compact, high-gradient X-band linac is under development at LLNL. High-brightness, relativistic electron bunches produced by the linac interact with a Joule-class, 10 ps laser pulse to generate tunable gamma-rays in the 0.5-2.5 MeV photon energy range via Compton scattering. The source will be used to excite nuclear resonance fluorescence lines in various isotopes; applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status will be presented. |
||
TH4GBC06 | X-Band Photonic Bandgap (PBG) Structure Breakdown Experiment | 3163 |
|
||
Funding: Work supported by DoE HEP, under contracts DE-FG02-91ER40648 and DE-AC02-76-SF00515 In order to understand the performance of photonic bandgap (PBG) structures under realistic high gradient operation, an X-band (11.424 GHz) PBG structure was designed for high power testing in a standing wave breakdown experiment at SLAC. The PBG structure was hot tested to gather breakdown statistics, and achieved an accelerating gradient of 65 MV/m at a breakdown rate of two breakdowns per hour at 60 Hz, and accelerating gradients above 110 MV/m at higher breakdown rates, for a total pulse length of 320 ns. High pulsed heating occurred in the PBG structure, with many shots above 270K, and an average of 170K for 35 x 106 shots. Damage was observed in scanning electron microscope imaging. No breakdown damage was observed on the iris surface, the location of peak electric field, but pulsed heating damage was observed on the inner rods, the location of magnetic fields as high as 1 MA/m. Breakdown in accelerator structures is generally understood in terms of electric field effects. PBG structure results highlight the unexpected role of magnetic fields on breakdown. We think that relatively low electric field in combination with high magnetic field on the rod surface may trigger breakdowns. |
||
|