A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Summers, D.J.

Paper Title Page
MO6PFP069 Progress on the MuCOOL and MICE Coupling Coils 289
 
  • M.A. Green, D. Li, S.P. Virostek, M.S. Zisman
    LBNL, Berkeley, California
  • A.B. Chen, X.L. Guo, X.K. Liu, H. Pan, L. Wang, H. Wu, F.Y. Xu, S.X. Zheng
    ICST, Harbin
  • D.J. Summers
    UMiss, University, Mississippi
 
 

Funding: This work is supported by funds under the “985-2” plan of HIT. This work is also supported by the Office of Science, US-DOE under DOE contract DE-AC02-05CH11231 and by NSF through NSF-MRI-0722656.


The superconducting coupling solenoid for MuCOOL and MICE will have an inside radius of 750 mm, and a coil length of 285 mm. The MuCOOL coupling coil is identical to the MICE coupling coils. The MICE coupling magnet will have a self inductance of 592 H. When operated at it maximum design current of 210 A (the highest momentum operation of MICE), the magnet stored energy will be about 13 MJ. These magnets will be kept cold using a pair of pulse tube cryocoolers that deliver 1.5 W at 4.2 K and 55 W at 60 K. This report describes the progress on the MuCOOL and MICE coupling magnet design and engineering. The progress on the construction of the first coupling coil will also be presented.

 
WE5PFP005 The Normal Conducting RF Cavity for the MICE Experiment 1994
 
  • D. Li, N. Andresen, A.J. DeMello, S.P. Virostek, M.S. Zisman
    LBNL, Berkeley, California
  • R.A. Rimmer
    JLAB, Newport News, Virginia
  • D.J. Summers
    UMiss, University, Mississippi
 
 

The international muon ionization cooling experiment (MICE) requires low frequency and normal conducting RF cavities to compensate for muon beams’ longitudinal energy lost in the MICE cooling channel. Eight 201-MHz normal conducting RF cavities with conventional beam irises terminate by large and thin beryllium windows are needed. The cavity design is based on a successful prototype cavity for the US MUCOOL program. The MICE RF cavity will be operated at 8-MV/m in a few Tesla magnetic fields with 1-ms pulse length and 1-Hz repetition rate. The cavity design, fabrication, post process plans and as well as integration to the MICE cooling channel will be discussed and presented in details.