Paper | Title | Page |
---|---|---|
MO3RAC04 | Super-B Project Overview | 38 |
|
||
The SuperB project aims at the construction of an asymmetric (4x7 GeV), very high luminosity, B-Factory on the Roma II (Italy) University campus. The luminosity goal of 1036 cm-2 s-1 can be reached with a new collision scheme with large Piwinski angle and the use of “crab” sextupoles. A crab-waist IR has been successfully tested at the DAPHNE Phi-Factory at LNF-Frascati (Italy) in 2008. The crab waist together with very low beta* will allow for operation with relatively low beam currents and reasonable bunch length, comparable to those of PEP-II and KEKB. In the High Energy Ring, two spin rotators permit bringing longitudinally polarized beams into collision at the IP. The lattice has been designed with a very low intrinsic emittance and is quite compact, less than 2 km long. The tight focusing requires a sophisticated Interaction Region with quadrupoles very close to the IP. A Conceptual Design Report was published in March 2007, and beam dynamics and collective effects R&D studies are in progress in order to publish a Technical Design Report by the end of 2010. A status of the design and simulations is presented in this paper. |
||
|
||
MO6PFP045 | Advances in the Studies of the Magnetic Design for the Final Focus Quadrupoles of the SuperB | 238 |
|
||
We present an improved design of the focusing elements close to the interaction point of the SuperB accelerator. These magnets have to provide pure quadrupolar fields on each of the two beams to decrease the background rate in the detector which would be produced by the over-bend of the off-energy particles if a dipolar component were present. Very good field quality is also required to preserve the dynamic aperture of the rings. Because of the small separation of the two beams (only few centimeters) and the high gradient required by the SuperB final focus, neither a permanent magnet design nor a multi-layer configuration are viable solutions. A novel design, based on 'helical-type' windings, has therefore been investigated. In this paper we will present the improved magnetic design and its performances evaluated with a three dimensional finite element analysis. |
||
WE6PFP050 | Longitudinal Bunch Position Control for the Super-B Accelerator | 2607 |
|
||
Funding: Work supported by the U.S. Department of Energy under contract number DE-AC03-76SF00515. The use of normal conducting cavities and an ion-clearing gap will cause a significant RF accelerating voltage gap transient and longitudinal phase shift of the individual bunches along the bunch train in both rings of the SuperB accelerator. Small relative centroid position shifts between bunches of the colliding beams will have a large adverse impact on the luminosity due to the small beta y* at the interaction point (IP). We investigate the possibility of minimizing the relative longitudinal position shift between bunches by reducing the gap transient in each ring and matching the longitudinal bunch positions of the two rings at the IP using feedback/feedforward techniques in the LLRF. The analysis is conducted assuming maximum use of the klystron power installed in the system. |
||
WE6PFP051 | Further Progress on a Design for a Super-B Interaction Region | 2610 |
|
||
Funding: Work supported by the Department of Energy under contract number DE-AC03-76SF00515. We present an improved design for a Super-B interaction region. The new design minimizes local bending of the two colliding beams by separating all beam magnetic elements near the Interaction Point (IP). The total crossing angle at the IP is increased from 50 mrad to 60 mrad. The first magnetic element is a six slice Permanent Magnet (PM) quadrupole with an elliptical aperture allowing us to increase the vertical space for the beam. This magnet starts 36 cm from the Interaction Point (IP). This magnet is only seen by the Low-Energy Beam (LEB), the High-Energy Beam (HEB) has a drift space at this location. This allows the preliminary focusing of the LEB which has a smaller beta y* at the IP than the HEB. The rest of the final focusing for both beams is achieved by two super-conducting side-by-side quadrupoles (QD0 and QF1). These sets of magnets are enclosed in a warm bore cryostat located behind the PM quadrupole for the LEB. We describe this new design for the interaction region. |
||
WE6PFP052 | Changing the PEP-II Center-of-Mass Energy down to 10 GeV and up to 11 GeV | 2613 |
|
||
Funding: Work supported by the Department of Energy under contract number DE-AC03-76SF00515. The PEP-II B-Factory was designed and optimized to run at the Upsilon 4S resonance (10.580 GeV with a 9 GeV e- beam and a 3.1 GeV e+ beam). The interaction region (IR) used permanent magnet dipoles to bring the beams into a head-on collision. The first focusing element for both beams was also a permanent magnet. The IR geometry, masking, beam orbits and beam pipe apertures were designed for 4S running. Even though PEP-II was optimized for the 4S, we successfully changed the center-of-mass energy (Ecm) down to the Upsilon 2S resonance and completed an Ecm scan from the 4S resonance up to 11.2 GeV. The luminosity throughout these changes remained near 1x1034 cm-2s-1 . The Ecm was changed by moving the energy of the high-energy beam (HEB). The beam energy differed by more than 20% which produced significantly different running conditions for the RF system. The energy loss per turn changed 2.5 times over this range. We describe how the beam energy was changed and discuss some of the consequences for the beam orbit in the interaction region. We also describe some of the RF issues that arose and how we solved them as the high-current HEB energy changed. |
||
WE6PFP053 | A Proposed Fast Luminosity Feedback for the Super-B Accelerator | 2616 |
|
||
Funding: Work supported by the Department of Energy under contract number DE-AC03-76SF00515. We present a possible design for a fast luminosity feedback for the Super-B Interaction Point (IP). The design is an extension of the fast luminosity feedback installed on the PEP-II accelerator. During the last two runs of PEP-II and BaBar (2007-2008), we had an improved luminosity feedback system that was able to maintain peak luminosity with faster correction speed than the previous system. The new system utilized fast dither coils on the High-Energy Beam (HEB) to independently dither the x position, the y position and the y angle at the IP, at roughly 100 Hz. The luminosity signal was then read out with three independent lock-in amplifiers. An overall correction was computed based on the lock-in signal strengths and beam corrections for position in x and y and in the y angle at the IP were simultaneously applied to the HEB. With the 100 times increase in luminosity for the SuperB design, we propose using a similar fast luminosity feedback that can operate at frequencies between DC and 1 kHz, high enough to be able to follow and nullify any vibrational beam motion from the final focusing magnets. |
||
TH5PFP088 | HOM Sensitivity in the PEP-II HER Vacuum Chamber | 3413 |
|
||
Funding: Work supported by Department of Energy Contract DE-AC02-76SF00515 Synchrotron radiation is the main source of vacuum chamber heating in the PEP-II storage ring collider. This heating is reduced substantially as lattice energy is lowered. Energy scans over Υ energy states were performed by varying the high energy ring (HER) lattice energy at constant gap voltage and frequency. We observed unexpected temperature rise at particular locations when HER lattice energy was lowered from 8.6 GeV (Υ(3S)) to 8.0 GeV (Υ(2S)) while most other temperatures decreased. Bunch length measurements reveal a shorter bunch at the lower energy. The shortened bunch overheated a beam position monitoring electrode causing a vacuum breach. We explain the unexpected heating as a consequence of increased higher order mode (HOM) power generated by a shortened bunch. In this case, temperature rise helps to identify HOM sources and HOM sensitive vacuum chamber elements. Reduction of gap voltage helps to reduce this unexpected heating. |
||
TH6PFP060 | Touschek Background and Lifetime Studies for the SuperB Factory | 3844 |
|
||
The novel crab waist collision scheme under test at the DAΦNE Frascati phi-factory finds its natural application to the SuperB project, the asymmetric e+e- flavour factory at very high luminosity with low beam currents and reduced background possibly located at Tor Vergata University. The SuperB accelerator design requires a careful choice of beam parameters to reach a good trade-off between different effects. We present here simulation results for the Touschek backgrounds and lifetime obtained for the latest machine design. Distributions of the Touschek particle losses at the at the interaction region have been tracked into the detectors for further investigations. A set of collimators is foreseen to stop Touschek particles. Their position along the rings has also been studied, together with their shape optimization. |
||
FR5RFP086 | Analysis of the Wake Field Effects in the PEP-II SLAC B-Factory | 4740 |
|
||
Funding: work supported by the Department of Energy under contract number DE-AC03-76SF00515 We present the history and analysis of different wake field effects throughout the operational life of the PEP-II SLAC B-factory. Although the impedance of the high and low energy rings is small, the high current intense beams generated a lot of power. These wake field effects are: heating and damage of vacuum beam chamber elements like RF seals, vacuum valves , shielded bellows, BPM buttons and ceramic tiles; vacuum spikes, vacuum instabilities and high detector background; beam longitudinal and transverse instabilities. We also discuss the methods used to eliminate these effects. Results of this analysis and the PEP-II experience may be very useful in the design of new storage rings and light sources. |