A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Stedman, G.Q.

Paper Title Page
TU5PFP048 Robustness of the Superconducting Multicell Cavity Design for the Cornell Energy Recovery Linac 933
 
  • M. Liepe, G.Q. Stedman, N.R.A. Valles
    Cornell University, Ithaca, New York
 
 

Funding: This work is supported by the National Science Foundation.


Cornell University is developing an Energy-Recovery-Linac driven x-ray light source. One of the major components of this accelerator will be its 5 GeV superconducting main linac. The design of the superconducting RF cavities in this main linac has been optimized primarily for two objectives: (1) low RF losses from the accelerating mode to minimize refrigeration cost and (2) strong Higher-Order-Mode damping to preserve low emittance and prevent beam break-up at high beam current (100 mA). In this paper we study the robustness of this optimized cavity design with respect to small cell shape fluctuations from fabrication errors.