A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Smith, S.L.

Paper Title Page
TU5RFP083 Progress on the Commissioning of ALICE, the Energy Recovery Linac-Based Light Source at Daresbury Laboratory 1281
 
  • S.L. Smith, R. Bate, C.D. Beard, M.A. Bowler, R.K. Buckley, S.R. Buckley, J.A. Clarke, P.A. Corlett, M. Dufau, D.J. Dunning, B.D. Fell, P. Goudket, A.R. Goulden, S.A. Griffiths, J.D. Herbert, C. Hill, F. Jackson, S.P. Jamison, J.K. Jones, L.B. Jones, A. Kalinin, N. Marks, P.A. McIntosh, J.W. McKenzie, K.J. Middleman, B.L. Militsyn, A.J. Moss, B.D. Muratori, J.F. Orrett, S.M. Pattalwar, P.J. Phillips, M.W. Poole, Y.M. Saveliev, D.J. Scott, B.J.A. Shepherd, R.J. Smith, N. Thompson, B. Todd, T.M. Weston, A.E. Wheelhouse, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • J.R. Alexander, P. Atkinson, N. Bliss, I. Burrows, G. Cox, P.A.D. Dickenson, A. Gallagher, K.D. Gleave, J.P. Hindley, B.G. Martlew, I.D. Mullacrane, A. Oates, P.D. Quinn, D.G. Stokes, J. Strachan, P.J. Warburton, C.J. White
    STFC/DL, Daresbury, Warrington, Cheshire
  • W.R. Flavell, E.A. Seddon
    UMAN, Manchester
  • F.G. Gabriel
    FZD, Dresden
  • C. Gerth
    DESY, Hamburg
  • F.E. Hannon, C. Hernandez-Garcia, K. Jordan, G. Neil
    JLAB, Newport News, Virginia
  • K. Harada
    KEK, Ibaraki
  • P. Harrison, D.J. Holder, G.M. Holder, P. Weightman
    The University of Liverpool, Liverpool
  • S.F. Hill, G. Priebe, R.V. Rotheroe, M. Surman
    STFC/DL/SRD, Daresbury, Warrington, Cheshire
  • G.J. Hirst, P.G. Huggard
    STFC/RAL, Chilton, Didcot, Oxon
  • P. vom Stein
    ACCEL, Bergisch Gladbach
 
 

ALICE (Accelerators and Lasers in Combined Experiments) is a 35 MeV energy recovery linac based light source. ALICE is being developed as an experimental test-bed for a broad suite of science and technology activities that make use of electron acceleration and ultra-short pulse laser techniques. This paper reports the progress made in accelerator commissioning and includes the results of measurement made on the commissioning beam. The steps taken to prepare the beam for short pulse operation as a driver for a Compton Back Scattered source and in preparation for the commissioning of the free electron laser are reported.

 
WE4PBI01 EMMA, the World's First Non-Scaling FFAG Accelerator 1947
 
  • S.L. Smith
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
 

EMMA, the Electron Model with Many Applications, was originally conceived as a model of a GeV-scale muon accelerator. The non-scaling (NS) properties of resonance crossing, small apertures, parabolic ToF and serpentine acceleration are novel, unproven accelerator physics and require "proof of principle". EMMA has metamorphosed from a simple "demonstration" objective to a sophisticated instrument for accelerator physics investigation with operational demands far in excess of the muon application that lead to technological challenges in magnet design, rf optimisation, injection and extraction, and beam diagnostics. Machine components procured in 2008 will be installed February-May 2009 leading to full system tests June-August and commissioning with electrons beginning September 2009.

 

slides icon

Slides

 
WE5RFP047 A Recirculating Linac as a Candidate for the UK New Light Source Project 2376
 
  • P.H. Williams, D. Angal-Kalinin, J.K. Jones, B.D. Muratori, S.L. Smith
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • R. Bartolini
    JAI, Oxford
  • I.P.S. Martin, J. Rowland
    Diamond, Oxfordshire
  • H.L. Owen
    UMAN, Manchester
  • P.H. Williams
    Cockcroft Institute, Warrington, Cheshire
 
 

A design for a free electron laser driver which utilises 1.3 GHz superconducting CW accelerating structures is studied. The machine will deliver longitudinally compressed electron bunches with repetition rates of 1 kHz with a possibility to increase up to 1 MHz. Tracking is performed from an NC RF photocathode gun, accelerating and compressing in three stages to obtain peak current greater than 1 kA at 2.2 GeV. This is achieved through injection at 200 MeV, then recirculating twice in a 1 GeV main linac. The optics design, optimisation procedures and start to end modelling of this system are presented.

 
TU5RFP022 A Proposed New Light Source Facility for the UK 1141
 
  • R.P. Walker, R. Bartolini, C. Christou, J.H. Han, J. Kay, I.P.S. Martin, G. Rehm, J. Rowland
    Diamond, Oxfordshire
  • D. Angal-Kalinin, M.A. Bowler, J.A. Clarke, D.J. Dunning, B.D. Fell, A.R. Goulden, F. Jackson, S.P. Jamison, J.K. Jones, K.B. Marinov, P.A. McIntosh, J.W. McKenzie, B.L. Militsyn, A.J. Moss, B.D. Muratori, S.M. Pattalwar, M.W. Poole, R.J. Smith, S.L. Smith, N. Thompson, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • N. Bliss, G.P. Diakun, M.D. Roper
    STFC/DL, Daresbury, Warrington, Cheshire
  • J.L. Collier, C.A. Froud, G.J. Hirst, E. Springate
    STFC/RAL, Chilton, Didcot, Oxon
  • J.P. Marangos, J.W.G. Tisch
    Imperial College of Science and Technology, Department of Physics, London
  • B.W.J. McNeil
    USTRAT/SUPA, Glasgow
  • H.L. Owen
    UMAN, Manchester
 
 

The New Light Source (NLS) project was launched in April 2008 by the UK Science and Technology Facilities Council (STFC) to consider the scientific case and develop a conceptual design for a possible next generation light source based on a combination of advanced conventional laser and free-electron laser sources. Following a series of workshops and a period of scientific consultation, the science case was approved in October 2008 and the go-ahead given to continue the project to the design stage. In November the decision was taken that the facility will be based on cw superconducting technology in order to provide the best match to the scientific objectives. In this paper we present the source requirements, both for baseline operation and with possible upgrades, and the current status of the design of the accelerator driver and free-electron laser sources to meet those requirements.

 
TU6PFP050 Exploring the Feasibility of a Stand Alone Muon Facility for MuSR Research 1394
 
  • A. Bungau, R. Cywinski
    University of Huddersfield, Huddersfield
  • R.J. Barlow
    UMAN, Manchester
  • K. Clausen, T. Shiroka
    PSI, Villigen
  • P. Dalmas de Reotier
    CEA, Grenoble
  • T.R. Edgecock, P.J.C. King, J.S. Lord, F.L. Pratt
    STFC/RAL, Chilton, Didcot, Oxon
  • M.W. Poole, S.L. Smith
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
 

The current paper discusses possible designs for a high intensity stand alone muon source for muSR studies of condensed matter. In particular we shall focus upon the potential implementation of a new generation of high power but relatively compact and cost effective proton drivers based on non-scaling fixed field alternating gradient (ns-FFAG) accelerator technology. The technical issues which must be addressed are also considered.

 
WE5PFP011 PAMELA: Development of the RF System for a Non-Relativistic Non-Scaling FFAG 2009
 
  • T. Yokoi, J.H. Cobb, H. Witte
    OXFORDphysics, Oxford, Oxon
  • M. Aslaninejad, J. Pasternak, J.K. Pozimski
    Imperial College of Science and Technology, Department of Physics, London
  • R.J. Barlow
    UMAN, Manchester
  • C.D. Beard, P.A. McIntosh, S.L. Smith
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • R.J.L. Fenning
    Brunel University, Middlesex
  • I.S.K. Gardner
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
  • D.J. Kelliher, S. Machida
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
  • K.J. Peach, S.L. Sheehy
    JAI, Oxford
  • R. Seviour
    Cockcroft Institute, Lancaster University, Lancaster
  • S.C. Tygier
    Manchester University, Manchester
  • B. Vojnovic
    Gray Cancer Institute, Northwood, Middlesex
 
 

Funding: EP/E032869/1


AMELA (Particle Accelerator for MEdicaL Applications) is a newly developed fixed field accelerator, which has capability for  rapid beam acceleration, which is interesting  for practical applications  such as charged particle therapy.  PAMELA aims to design a particle therapy facility using Non-Scaling FFAG technology, with a target beam repetition rate of 1kHz, which is far beyond that of conventional synchrotron. To realize the repetition rate, the key component is rf acceleration system. The combination of a high field gradient and a high duty factor is a significant challenge.   In this paper, options for the system and the status of their development are presented.

 
FR5REP108 EMMA Diagnostic Line 5026
 
  • B.D. Muratori, J.K. Jones, S.L. Smith, S.I. Tzenov
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
 

EMMA (Electron Machine with Many Applications) is a prototype non-scaling electron FFAG to be hosted at Daresbury Laboratory. NS-FFAGs related to EMMA have an unprecedented potential for medical accelerators for carbon and proton hadron therapy. It also represents a possible active element for an ADSR (Accelerator Driven Sub-critical Reactor). This paper will summarize the design of the extraction / diagnostic transfer line of the NS-FFAG. In order to operate EMMA, the energy recovery linac ALICE shall be used as injector and the energy will range from 10 to 20 MeV. Because this would be the first non-scaling FFAG, it is important that as many of the bunch properties are studied as feasible, both at injection and at extraction. To do this, a complete diagnostic line was designed consisting of a tomography module together with several other diagnostic devices including the possibility of using a transverse deflecting cavity. Details of the diagnostics are also presented.

 
FR5REP109 EMMA Commissioning 5029
 
  • B.D. Muratori, J.K. Jones, Y.M. Saveliev, S.L. Smith, S.I. Tzenov
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • J.S. Berg
    BNL, Upton, Long Island, New York
  • C. Johnstone
    Fermilab, Batavia
  • S.R. Koscielniak
    TRIUMF, Vancouver
 
 

EMMA (Electron Machine with Many Applications) is a prototype non-scaling electron FFAG to be hosted at Daresbury Laboratory. NS-FFAGs related to EMMA have an unprecedented potential for medical accelerators for carbon and proton hadron therapy. It also represents a possible active element for an ADSR (Accelerator Driven Sub-critical Reactor). This paper summarises the commissioning plans for this machine together with the major steps and experiments involved along the way. A description of how the 10 to 20 MeV beam is achieved within ALICE is also given, as well as extraction from the EMMA ring to the diagnostics line and then dump.

 
TH4GAC03 PAMELA Overview: Design Goals and Principles 3142
 
  • K.J. Peach, J.H. Cobb, S.L. Sheehy, H. Witte, T. Yokoi
    JAI, Oxford
  • M. Aslaninejad, M.J. Easton, J. Pasternak
    Imperial College of Science and Technology, Department of Physics, London
  • R.J. Barlow, H.L. Owen, S.C. Tygier
    UMAN, Manchester
  • C.D. Beard, P.A. McIntosh, S.L. Smith, S.I. Tzenov
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • N. Bliss
    STFC/DL, Daresbury, Warrington, Cheshire
  • T.R. Edgecock, J.K. Pozimski, J. Rochford
    STFC/RAL, Chilton, Didcot, Oxon
  • R.J.L. Fenning, A. Khan
    Brunel University, Middlesex
  • M.A. Hill
    GIROB, Oxford
  • C. Johnstone
    Fermilab, Batavia
  • B. Jones, B. Vojnovic
    Gray Institute for Radiation Oncology and Biology, Oxford
  • D.J. Kelliher, S. Machida
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
  • R. Seviour
    Cockcroft Institute, Lancaster University, Lancaster
 
 

Funding: EPSRC EP/E032869/1


The PAMELA (Particle Accelerator for MEdicaL Applications) project is to design an accelerator for proton and light ion therapy using non-scaling Fixed Field Alternating Gradient (FFAG) accelerators, as part of the CONFORM project, which is also constructing the EMMA electron model of a non-scaling FFAG at Daresbury. This paper presents an overview of the PAMELA design, and a discussion of the design goals and the principles used to arrive at a preliminary specification of the accelerator.

 

slides icon

Slides