A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Skoro, G.P.

Paper Title Page
WE6RFP039 Solid Target for a Neutrino Factory 2878
 
  • G.P. Skoro
    Sheffield University, Sheffield
  • J.J. Back
    University of Warwick, Coventry
  • J.R.J. Bennett
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
  • S.J. Brooks
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
  • C.J. Densham, T.R. Edgecock, P. Loveridge
    STFC/RAL, Chilton, Didcot, Oxon
 
 

Funding: Science and Technology Facilities Council (United Kingdom)


The UK programme of high power target developments for a Neutrino Factory is centred on the study of high-Z materials (tungsten, tantalum). A description of lifetime shock tests on candidate materials is given as a part of the research into a solid target solution. A fast high current pulse is applied to a thin wire of the sample material and the lifetime measured from the number of pulses before failure. These measurements are made at temperatures up to ~2000 K. The stress on the wire is calculated using the LS-DYNA code and compared to the stress expected in the real Neutrino Factory target. It has been found that tantalum is too weak at these temperatures but a tungsten wire has reached over 26 million pulses (equivalent to more than ten years of operation at the Neutrino Factory). Measurements of the surface velocity of the wire using a laser interferometry system (VISAR) are in progress, which, combined with LS-DYNA modelling, will allow the evaluation of the constitutive equations of the material. An account is given of the optimisation of secondary pion production and capture in a Neutrino Factory and of the latest solid target engineering ideas.