A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Shishlo, A.P.

Paper Title Page
TU6RFP041 Physical Model of Hydrogen Ion Laser Stripping 1635
 
  • T.V. Gorlov, V.V. Danilov, A.P. Shishlo
    ORNL, Oak Ridge, Tennessee
 
 

Funding: *SNS is managed by UT-Battelle, LLC, for the U. S. Department of Energy under Contract No. DE-AC05-00OR22725.


Thin carbon foils used as a charge strippers for H־ ions have a limited life time and produce uncontrolled beam loss. Thus, foil based injection is one of the factors limiting beam power in high intensity proton rings. There is a possibility to replace such foils by laser-assisted stripping of negative hydrogen ions, a method developed and demonstrated at the SNS accelerator in Oak Ridge. In this paper we present progress in the physics and computation of H־ laser stripping. We present a physical model which includes such factors as the Stark effect, the polarization of the laser field, and the spontaneous relaxation and autoionization of hydrogen atoms in a strong electro-magnetic field. The model formulates a quantum mechanical problem that can be solved numerically using a module created for the PyORBIT parallel code developed at SNS.