Paper | Title | Page |
---|---|---|
TU2PBC04 | Transport of Ultra-Short Electron Bunches in a Free-Electron Laser Driven by a Laser-Plasma Wakefield Accelerator | 680 |
|
||
Funding: The U.K. EPSRC and the European Community - New and Emerging Science and Technology Activity under the FP6 “Structuring the European Research Area” programme (project EuroLEAP, contract number 028514) The Advanced Laser-Plasma High-Energy Accelerators towards X-rays (ALPHA-X) programme* is developing laser-plasma accelerators for the production of ultra-short electron bunches as drivers of incoherent and coherent radiation sources from plasma and magnetic undulators. Focusing of ultra-short electron bunches from a laser-plasma wakefield accelerator into an undulator requires that particular attention be paid to the electron beam quality. We will discuss the design and implementation of an upgraded focusing system for the ALPHA-X beam line, which currently consists of a triplet of electromagnet quadrupoles. The upgrade will comprise the installation of additional compact permanent quadrupoles** very close to the accelerator exit. This will improve the matching of the beam into the undulator. The design has been carried out using the General Particle Tracer (GPT) code*** and TRANSPORT code, which consider space charge effects and allow a realistic estimate of electron beam properties inside the undulator to be obtained. We will present a study of the influence of beam transport on free-electron laser action in the undulator, paying particular attention to bunch dispersion. * D. Jaroszynski et al., Phil. Trans. R. Soc. A 364, 689-710 (2006) |
||
|
||
TU5RFP083 | Progress on the Commissioning of ALICE, the Energy Recovery Linac-Based Light Source at Daresbury Laboratory | 1281 |
|
||
ALICE (Accelerators and Lasers in Combined Experiments) is a 35 MeV energy recovery linac based light source. ALICE is being developed as an experimental test-bed for a broad suite of science and technology activities that make use of electron acceleration and ultra-short pulse laser techniques. This paper reports the progress made in accelerator commissioning and includes the results of measurement made on the commissioning beam. The steps taken to prepare the beam for short pulse operation as a driver for a Compton Back Scattered source and in preparation for the commissioning of the free electron laser are reported. |
||
WE2RAI01 | The Development of a Superconducting Undulator for the ILC Positron Source | 1839 |
|
||
The ILC positron source relies upon a ~200 m long superconducting helical undulator in order to generate the huge flux of gamma photons required. The period is only 11.5 mm but the field strength is ~1 T. The UK is building and testing a full scale 4 m long ILC cryomodule at the moment. It will be completed in 2008 and the results used to demonstrate the feasibility of the full (200 m long) system. |
||
|
||
FR5REP028 | High-Level ALICE Software Development | 4826 |
|
||
The ALICE accelerator is a 35MeV energy recovery linac prototype at Daresbury in the U.K. Due to the highly experimental nature of the accelerator, there has been a strong influence of accelerator physicists in the high-level control software for the machine. Starting from the underlying EPICS-based control system, a suite of interactive commissioning software has been built using traditional software approaches, such as LabVIEW, as well as experimenting with interactive, rapid prototyping programming languages, such as Mathematica. Using the EPICS Channel Access protocols, the control system is flexible and extensible. A wide range of tools can be used to develop and debug high-level software, allowing machine physicists to use the most appropriate and familiar tools for software development. |