A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Shaposhnikova, E.N.

Paper Title Page
MO6RFP008 Experimental Studies of Carbon Coatings as Possible Means of Suppressing Beam Induced Electron Multipacting in the CERN SPS 366
 
  • E.N. Shaposhnikova, G. Arduini, J. Axensalva, E. Benedetto, S. Calatroni, P. Chiggiato, K. Cornelis, P. Costa Pinto, B. Henrist, J.M. Jimenez, E. Mahner, G. Rumolo, M. Taborelli, C. Yin Vallgren
    CERN, Geneva
 
 

Electron cloud build-up is a major limitation for the operation of the SPS with LHC beam above nominal intensity. These beams are envisaged in the frame of the LHC luminosity upgrade and will be available from the new injectors LPSPL and PS2. A series of studies have been conducted in order to identify possible means to suppress electron multipacting by coating the existing SPS vacuum chambers with thin films of amorphous carbon. After a description of the experimental apparatus installed in the SPS, the results of the tests performed with beam in 2008 will be presented.

 
WE6PFP017 LHC Abort Gap Cleaning with the Transverse Damper 2519
 
  • E. Gianfelice-Wendt
    Fermilab, Batavia
  • B. Goddard, W. Höfle, V. Kain, M. Meddahi, E.N. Shaposhnikova
    CERN, Geneva
  • A. Koschik
    ETH, Zurich
 
 

Funding: Work partly supported by Fermilab, operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy


In the Large Hadron Collider –LHC, particles not captured by the RF system at injection or leaking out of the RF bucket may quench the superconducting magnets during beam abort. The problem, common to other superconducting machines, is particularly serious for the LHC due to the very large stored energy in the beam. For the LHC a way of removing the unbunched beam has been studied and it uses the existing damper kickers to excite resonantly the particles travelling along the abort gap. In this paper we describe the results of simulations performed with MAD-X for various LHC optics configurations, including the estimated multipolar errors.

 
WE5PFP074 First Beam Commissioning of the 400 MHz LHC RF System 2180
 
  • A.C. Butterworth, M. E. Angoletta, L. Arnaudon, P. Baudrenghien, J. Bento, T. Bohl, O. Brunner, E. Ciapala, F. Dubouchet, G. Hagmann, W. Höfle, T.P.R. Linnecar, P. Maesen, J.C. Molendijk, E. Montesinos, J. Noirjean, A.V. Pashnin, V. Rossi, J. Sanchez-Quesada, M. Schokker, E.N. Shaposhnikova, D. Stellfeld, J. Tuckmantel, D. Valuch, U. Wehrle, F. Weierud
    CERN, Geneva
  • R. Sorokoletov
    JINR, Dubna, Moscow Region
 
 

Hardware commissioning of the LHC RF system was successfully completed in time for first beams in LHC in September 2008. All cavities ware conditioned to nominal field, power systems tested and all Low level synchronization systems, cavity controllers and beam control electronics were tested and calibrated. Beam was successfully captured in ring 2, cavities phased, and a number of initial measurements made. These results are presented and tests and preparation for colliding beams in 2009 are outlined.

 
TH5RFP038 Longitudinal Schottky Spectrum of the Peak Bunch Amplitude Signal 3531
 
  • E.N. Shaposhnikova, T. Bohl, T.P.R. Linnecar
    CERN, Geneva
 
 

Diagnostic techniques based on the Schottky spectrum of the peak detected signal have been used at CERN for a long time to study the behaviour of bunched beams. In this paper it is shown how the measured spectrum is related to the particle distribution in synchrotron frequency. The experimental set-up used and its limitations are also presented together with examples of beam measurements in the SPS and LHC.

 
FR2RAC02 Measurement and Analysis of SPS Kicker Magnet Heating and Outgassing with Different Bunch Spacing 4264
 
  • M.J. Barnes, F. Caspers, K. Cornelis, L. Ducimetière, E. Mahner, G. Papotti, G. Rumolo, V. Senaj, E.N. Shaposhnikova
    CERN, Geneva
 
 

Fast kicker magnets are used to inject beam into and eject beam out of the CERN SPS accelerator ring. These kickers are generally ferrite loaded transmission line type magnets with a rectangular shaped aperture through which the beam passes. Unless special precautions are taken the impedance of the ferrite yoke can provoke significant beam induced heating, over several hours, even above the Curie temperature of the ferrite. At present the nominal bunch spacing in the SPS is 25 ns, however for an early stage of LHC operation it is preferable to have 50 ns bunch spacing. Machine Development (MD) studies have been carried out with an inter-bunch spacing of 25 ns, 50 ns or 75 ns. For some of the SPS kicker magnets the 75 ns bunch spacing resulted in considerable beam induced heating. In addition the MDs showed that 50 ns bunch spacing could result in a very rapid pressure rise in the kicker magnet and thus cause an interlock. This paper discusses the MD observations of the SPS kickers and analyses the available data to provide explanations for the phenomena: possible remedies are also discussed.

 

slides icon

Slides

 
FR5RFP056 Reference Measurements of the Longitudinal Impedance in the CERN SPS 4667
 
  • E.N. Shaposhnikova, T. Bohl, H. Damerau, K. Hanke, T.P.R. Linnecar, B. Mikulec, J. Tan, J. Tuckmantel
    CERN, Geneva
 
 

First reference measurements of the longitudinal impedance were made with beam in the SPS machine in 1999 to quantify the results of the impedance reduction programme, completed in 2001. The 2001 data showed that the low-frequency inductive impedance had been reduced by a factor 2.5 and that bunch lengthening due to the microwave instability was absent up to the ultimate LHC bunch intensity. Measurements of the quadrupole frequency shift with intensity in the following years suggest a significant increase in impedance (which nevertheless remains below the 1999 level) due to the installation of eight extraction kickers for beam transfer to the LHC. Microwave instability is still not observed up to the maximum bunch intensities available from injector. The experimental results are compared with expectations based on the known longitudinal impedance of the different machine elements in the SPS.