A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Sears, J.

Paper Title Page
TU3RAI01 SRF Experience with the Cornell High-Current ERL Injector Prototype 694
 
  • M. Liepe
    Cornell University, Ithaca, New York
  • S.A. Belomestnykh, E.P. Chojnacki, Z.A. Conway, V. Medjidzade, H. Padamsee, P. Quigley, J. Sears, V.D. Shemelin, V. Veshcherevich
    CLASSE, Ithaca, New York
 
 

Funding: This work is supported by the National Science Foundation.


Cornell University has developed and fabricated a SRF injector cryomodule for the acceleration of the high current (100 mA) beam in the Cornell ERL injector prototype. The injector cryomodule is based on superconducting rf technology with five 2-cell rf cavities operated in cw mode. To support the acceleration of a low energy, ultra low emittance, high current beam, the beam tubes on one side of the cavities have been enlarged to propagate Higher-Order-Mode power from the cavities to broadband rf absorbers located at 80 K between the cavities. The axial symmetry of these absorbers, together with two symmetrically placed input couplers per cavity, avoids transverse on-axis fields, which would cause emittance growth. Each cavity is surrounded by a LHe vessel and equipped with a frequency tuner including fast piezo-driven fine tuners for fast frequency control. The cryomodule provides the support and precise alignment for the cavity string, the 80 K cooling of the ferrite loads, and the 2 K LHe cryogenic system for the high cw heat load of the cavities. In this paper results of the commissioning phase of this injector cryomodule will be reported.

 

slides icon

Slides

 
TU5PFP045 Status of Niowave/Roark ILC Vendor Qualification Tests at Cornell 924
 
  • Z.A. Conway, E.P. Chojnacki, D.L. Hartill, M. Liepe, H. Padamsee, J. Sears
    CLASSE, Ithaca, New York
  • M.S. Champion, G. Wu
    Fermilab, Batavia
 
 

Funding: Work Supported by the U.S. Department of Energy


To build the ~14,000 cavities required for the ILC each of the three world regions must have a sizable industrial base of qualified companies to draw cavities from. One of these companies, Niowave Inc., recently manufactured six 1.3 GHz single-cell cavities for qualification purposes. All six cavities achieved gradients above 25 MV/m before they were limited by the available RF power (Q-slope) or quenched. This paper will report the results of cold tests for all six cavities and on the causes of quench determined by 2nd sound detection and optical inspection.

 
TU5PFP046 ILC Testing Program at Cornell University 927
 
  • Z.A. Conway, E.P. Chojnacki, D.L. Hartill, M. Liepe, H. Padamsee, A. Romanenko, J. Sears
    CLASSE, Ithaca, New York
 
 

Funding: Work Supported by the U.S. Department of Energy


Cornell University’s superconducting niobium nine-elliptical-cell cavity testing and repair program is one contributor to the collaborative effort on critical SRF R&D for the ILC. The Cornell University program benefits from several unique features which provide for the rapid testing and, if necessary, repair of ILC nine-cell cavities: a continuous vertical electropolish procedure, superfluid helium second sound defect location, and tumble polishing. First, we report on the cavity 2K RF performance and the effect of micro-EP preceding the cavity test. Single-cell results at KEK have shown that micro-EP as a final surface treatment reduces the spread in gradients, but micro-EP has not yet been tried with multi-cell cavities. Secondly, we report on the highly efficient method of detecting defects using a few He-II second sound wave detectors and powering several modes of the 1.3GHz TM010 passband.

 
TU5PFP047 Multi-Cell Reentrant Cavity Development and Testing At Cornell 930
 
  • Z.A. Conway, E.P. Chojnacki, D.L. Hartill, M. Liepe, D. Meidlinger, H. Padamsee, J. Sears, E.N. Smith
    CLASSE, Ithaca, New York
 
 

Funding: Work Supported by the NSF and the DOE


An innovative reentrant cavity design instigated the initial, highly successful, superconducting niobium reentrant-single-cell cavity tests at Cornell and KEK. Prompted by the success of the single cell program a joint effort of Cornell University and Advanced Energy Systems (AES) fabricated two multiple-cell reentrant cavities: a three-cell and a nine-cell cavity. This paper reports the development status of these two cavities. First, the results of cold tests, superfluid helium defect location and repair work on the reentrant nine-cell cavity will be presented. Second, the results of cold tests, including defect location and repair efforts of the reentrant three-cell cavity will be presented.

 
WE6RFP002 Design of an ERL Linac Cryomodule 2781
 
  • E.P. Chojnacki, S.A. Belomestnykh, S.S. Chapman, R.D. Ehrlich, G.H. Hoffstaetter, M. Liepe, H. Padamsee, J. Sears, E.N. Smith, V. Veshcherevich
    CLASSE, Ithaca, New York
 
 

Funding: Work supported by NSF, New York State, and Cornell University


A cryomodule design for the Cornell Energy Recovery Linac (ERL) will be based on TTF technology, but must have several unique features dictated by the ERL beam parameters. The main deviations from TTF are that the HOM loads must be on the beamline for sufficient damping, that the average power through the RF couplers is low, and that cw beam operation introduces higher heat loads. Several of these challenges were addressed for the Cornell ERL Injector, from which fabrication and operational insight was gained. A baseline design for the Cornell ERL Linac cryomodule will be presented that includes fabrication and operational considerations along with thermal and mechanical analyses.

 
WE5PFP050 Preparations for Assembly of the International ERL Cryomodule at Daresbury Laboratory 2113
 
  • P.A. McIntosh, R. Bate, C.D. Beard, D.M. Dykes, S.M. Pattalwar
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • S.A. Belomestnykh, M. Liepe, H. Padamsee, J. Sears, V.D. Shemelin, V. Veshcherevich
    CLASSE, Ithaca, New York
  • A. Büchner, F.G. Gabriel, P. Michel
    FZD, Dresden
  • M.A. Cordwell, J. Strachan
    STFC/DL, Daresbury, Warrington, Cheshire
  • J.N. Corlett, D. Li, S.M. Lidia
    LBNL, Berkeley, California
  • T. Kimura, T.I. Smith
    Stanford University, Stanford, California
  • D. Proch, J.K. Sekutowicz
    DESY, Hamburg
  • A. Quigley
    STFC/DL/SRD, Daresbury, Warrington, Cheshire
 
 

The collaborative development of an optimised cavity/cryomodule solution for application on ERL facilities, has now progressed to final assembly and testing of the cavity string components and their subsequent cryomodule integration. This paper outlines the verification of the various cryomodule sub-components and details the processes utilised for final cavity string integration. The paper also describes the modifications needed to facilitate this new cryomodule installation and ultimate operation on the ALICE facility at Daresbury Laboratory.