A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Schmidt, C.W.

Paper Title Page
TH5RFP052 Fermilab HINS Proton Ion Source Beam Measurements 3570
 
  • W.M. Tam
    IUCF, Bloomington, Indiana
  • G. Apollinari, S. Chaurize, S. Hays, G.V. Romanov, V.E. Scarpine, C.W. Schmidt, W.M. Tam, R.C. Webber
    Fermilab, Batavia
 
 

The proton ion source for the High Intensity Neutrino Source (HINS) Linac front-end at Fermilab has been successfully commissioned. It produces a 50 keV, 3 msec beam pulse with a peak current greater than 20 mA at 2.5 Hz. The beam is transported to the radio-frequency quadrupole (RFQ) by a low energy beam transport (LEBT) that consists of two focusing solenoids, four steering dipole magnets and a beam current transformer. To understand beam transmission through the RFQ, it is important to characterize the 50 keV beam before connecting the LEBT to the RFQ. A wire scanner and a Faraday cup are temporarily installed at the exit of the LEBT to study the beam parameters. Beam profile measurements are made for different LEBT settings and results are compared to those from computer simulations. In lieu of direct emittance measurements, a solenoid variation method based on profile measurements is used to reconstruct the beam emittance.

 
FR5REP056 A Possible FNAL 750 keV Linac Injector Upgrade 4896
 
  • C.-Y. Tan, D.S. Bollinger, C.W. Schmidt
    Fermilab, Batavia
 
 

Funding: Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.


The present FNAL Linac H- injector has been operational since 1978 and consists of a magnetron H- source and a 750-keV Cockcroft-Walton Accelerator. The proposed upgrade to this injector is to replace the present magnetron source having a rectangular aperture with a circular aperture, and to replace the Cockcroft-Walton with a 200-MHz RFQ. Operational experience at other laboratories has shown that the upgraded source and RFQ will be more reliable and require less manpower than the present system.