A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Santucci, J.K.

Paper Title Page
TH6REP090 Laser Timing Jitter Measurements Using a Dual-Sweep Streak Camera at the A0 Photoinjector 4171
 
  • J. Ruan, A.H. Lumpkin, J.K. Santucci
    Fermilab, Batavia
 
 

Funding: Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.


Excellent phase stability of the drive laser is a critical performance specification of photoinjectors such as Fermilab’s A0 photoinjector (A0PI). Previous efforts based on the measurement of the power spectrum of the signal of a fast photodiode illuminated by the mode locked infra-red laser pulse component indicated a phase jitter of less than 1.4 ps (technique limited). A recently procured dual-sweep plugin unit and existing Hamamatsu C5680 streak camera were used to study the phase stability of the UV laser pulse component. Initial measurements with the synchroscan vertical sweep unit locked to 81.25 MHz showed that the phase slew through the micropulse train and the phase jitter micropulse to micropulse were two key aspects that could be evaluated. The phase slew was much less than 100 fs per micropulse, and the total phase jitter (camera, trigger, and laser) was approximately 300 fs RMS for measurements of 20-micropulse trains. Data on the macropulse phase stability were also obtained. A possible upgrade to achieve better phase stability will be also discussed.