A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Sammut, N.J.

Paper Title Page
MO6PFP050 Hysteresis Effects of MCBX Magnets on the LHC Operation in Collision 250
 
  • N.J. Sammut, C. Giloux, M. Lamont, W. Venturini Delsolaro, S.M. White
    CERN, Geneva
 
 

The Large Hadron Collider beams are brought into collision by superconducting orbit corrector magnets which generate the parallel separation and crossing angles at the interaction points during the different cycle phases. Unfortunately, the magnetic field errors that result from hysteresis effects in the operation region of these magnets lead to unwanted orbit perturbations. In a previous paper, it has been shown that these effects are within the perturbations coming from beam-beam interactions for the MCBC and the MCBY magnets but are significant in the case of the MCBX magnets. This paper presents a refined model of their field in the frame of the Field Description for the LHC (FiDeL), the results obtained from new magnetic measurements in cold conditions to test the model, the powering mechanism employed to maximize their field reproducibility, and the impact the modeling error is predicted to have on the LHC orbit.

 
MO6PFP054 Pre-Cycle Selection for the Superconducting Main Magnets of the Large Hadron Collider 259
 
  • A.P. Verweij, N.J. Sammut, W. Venturini Delsolaro, R. Wolf
    CERN, Geneva
 
 

Pre-cycles for setting up the main magnets of the Large Hadron Collider are necessary for ensuring field reproducibility and low field-decay rates at injection. In this paper we propose standard pre-cycles for the main magnets of the LHC. We study the influence of the pre-cycle parameters on the field decay at injection by two different models. One already proven model is semi-empirical based on magnetic measurements of the magnets. The other is a new network based model of a Rutherford cable which directly calculates the current redistribution and associated magnetization change in the cable strands. The pre-cycle to be used may depend on the history of the machine or may have to be changed because of unforeseen phenomena in the machine. The choice of a new pre-cycle on the basis of magnetic measurements alone is a lengthy process. We confirm the usefulness of the network based model as a tool for selecting new pre-cycles, including decay-blocking degaussing pre-cycles, and compare with magnetic measurements.

 
MO6PFP046 First Field Test of FiDeL the Magnetic Field Description for the LHC 241
 
  • L. Bottura, M.C.L. Buzio, N. Catalan-Lasheras, L. Deniau, M. DiCastro, S.D. Fartoukh, M. Giovannozzi, P. Hagen, J.-P. Koutchouk, M. Lamont, J. Miles, RV. Remondino, N.J. Sammut, S. Sanfilippo, F. Schmidt, D. Sernelius, R.J. Steinhagen, M. Strzelczyk, E. Todesco, R. Tomás, W. Venturini Delsolaro, L. Walckiers, J. Wenninger, R. Wolf, P. Xydi
    CERN, Geneva
 
 

The start-up of the LHC has provided the first field test for the concept, functionality and accuracy of FiDeL, the Field Description for the LHC. FiDeL is primarily a parametric model of the transfer function of the main field integrals generated by the series of magnets in the LHC powering circuits, from main optical elements to high-order harmonic correctors, both superconducting and normal-conducting magnets. In addition, the same framework is used to predict harmonic errors of both static and dynamic nature, and forecast appropriate corrections. In this paper we give a description of the level of detail achieved in the model and the rationale adopted for the LHC start-up. Beam-based measurements have been used for an assessment of the first-shot accuracy in the prediction of the current setting for the main arc magnets*.


*The work reported has been performed by the authors and the FiDeL Team