Paper | Title | Page |
---|---|---|
TU5RFP064 | Towards A Self Sustained Free Electron Laser Device | 1232 |
|
||
We explore the possibility of using free-electron laser (FEL) triggered cathodes to produce high quality e-beams. We propose a scheme which foresees cathodes operating either as thermionic and photo-cathodes, which can be exploited in devices using the same e-beam to drive the laser and the cathode. We discuss different modes of operation, in particular we consider oscillator FELs, in which the light from higher order harmonics, generated in the oscillator cavity, is used to light the cathode. The dynamics of the system is explored along with the technical solutions, necessary for the stability of the system. The Master Oscillator Power Amplifier FEL scheme is explored too. The use of the same e-beam, driving the photocathode and the FEL, makes the system naturally free of any synchronization problem, arising when an external laser is used. The device is a kind of regenerative amplifier in which the growth of the optical power can be controlled by using a proper detuning or misalignment of the optical cavity. Specific examples are reported. The use of this technique for an ab-initio control the Coherent Radiation Synchrotron instability is finally discussed too. |
||
TH4PBC05 | Recent Results of the SPARC FEL Experiments | 3178 |
|
||
The SPARC project foresees the realization of a high brightness photo-injector to produce a 150-200 MeV electron beam to drive 500 nm FEL experiments in SASE, Seeding and Single Spike configurations. The SPARC photoinjector is also the test facility for the recently approved VUV FEL project named SPARX. The second stage of the commissioning, that is currently underway, foresees a detailed analysis of the beam matching with the linac in order to confirm the theoretically prediction of emittance compensation based on the “invariant envelope” matching , the demonstration of the “velocity bunching” technique in the linac and the characterisation of the spontaneous and stimulated radiation in the SPARC undulators. In this paper we report the experimental results obtained so far. The possible future energy upgrade of the SPARC facility to produce UV radiation and its possible applications will also be discussed. |
||
|