Paper | Title | Page |
---|---|---|
TU5PFP056 | Control System Design for Automatic Cavity Tuning Machines | 953 |
|
||
A series of four automatic tuning machines for 9-cell TESLA-type cavities are being developed and fabricated through a collaboration between DESY, FNAL and KEK. These machines are intended to support high-throughput cavity fabrication for construction of large SRF-based accelerator projects. Two of these machines will be delivered to cavity vendors for the tuning of XFEL cavities. The control system for these machines must support a high level of automation adequate for industrial use by non-expert operators. This paper describes the control system hardware and software designs, and shows preliminary results obtained with a tuning machine prototype. |
||
WE6RFP005 | Plan of the S1-Global Cryomodules for ILC | 2790 |
|
||
In an attempt at demonstrating an average field gradient of 31.5 MV/m as per the design accelerating gradient for ILC, a program called S1-Global is in progress as an international research collaboration among KEK, INFN, FNAL, DESY and SLAC. The S1-Global cryomodule will contain eight superconducting cavities from FNAL, DESY and KEK. The cryomodule will be constructed by joining two half-size cryomodules, each 6 m in length. The module containing four cavities from FNAL and DESY will be constructed by INFN. The design of this module is based on an improved 3rd generation TTF design. KEK will modify the 6-meter STF cryomodule to contain four KEK cavities. The designs of the cryomodules are ongoing between these laboratories, and the operation of the system is scheduled at the KEK-STF from June 2010. In this paper, the S1-Global cryomodule plan and the module design will be presented. ‘S1-Global collaboration’ as a co-author. |
||
FR3RBI05 | Progress Towards the International Linear Collider | 4297 |
|
||
With a now extended plan to 2012, the ILC Global Design Effort Technical Design Phase focuses on key R&D to verify performance goals and to reduce both technical risk and cost. This talk will review the progress during the last two years, and plans for the future. |
||
|
||
FR1RAI02 | The Conversion and Operation of the Cornell Electron Storage Ring as a Test Accelerator (CesrTA) for Damping Rings Research and Development | 4200 |
|
||
Funding: Support provided by the US National Science Foundation, the US Department of Energy, and the Japan/US Cooperation Program. In March of 2008, the Cornell Electron Storage Ring (CESR) concluded twenty eight years of colliding beam operations for the CLEO high energy physics experiment. We have reconfigured CESR as an ultra low emittance damping ring for use as a test accelerator (CesrTA) for International Linear Collider (ILC) damping ring R&D. The primary goals of the CesrTA program are to achieve a beam emittance approaching that of the ILC Damping Rings with a positron beam, to investigate the interaction of the electron cloud with both low emittance positron and electron beams, to explore methods to suppress the electron cloud, and to develop suitable advanced instrumentation required for these experimental studies (in particular a fast x-ray beam size monitor capable of single pass measurements of individual bunches). We report on progress with the CESR conversion activities, the status and schedule for the experimental program, and the first experimental results that have been obtained. |
||
|
||
FR1RAI03 | ATF2 Commissioning | 4205 |
|
||
ATF2 is a final-focus test beam line that attempts to focus the low-emittance beam from the ATF damping ring to a beam size of about 37 nm, and at the same time to demonstrate nm beam stability, using numerous advanced beam diagnostics and feedback tools. The construction is well advanced and beam commissioning of ATF2 has started in the second half of 2008. ATF2 is constructed and commissioned by ATF international collaborations with strong US, Asian and European participation. |
||
|