A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Rosenzweig, J.B.

Paper Title Page
TU6PFP046 High-Flux Inverse Compton Scattering Systems for Medical, Industrial and Security Applications 1387
 
  • S. Boucher, P. Frigola, A.Y. Murokh
    RadiaBeam, Marina del Rey
  • I. Jovanovic
    Purdue University, West Lafayette, Indiana
  • J.B. Rosenzweig, G. Travish
    UCLA, Los Angeles, California
 
 

Funding: This work is supported by the US Defense Threat Reduction Agency SBIR contract HDTRA1-08-P-0035.


Conventional X-ray sources used for medical and industrial imaging suffer from low spectral brightness, a factor which severely limits the image quality that can be obtained. X-ray sources based on Inverse Compton Scattering (ICS) hold promise to greatly improve the brightness of X-ray sources. While ICS sources have previously been demonstrated, and have produced high-peak brightness X-rays, so far experiments have produced low average flux, which limits their use for certain important commercial applications (e.g. medical imaging). RadiaBeam Technologies is currently developing a high peak- and average-brightness ICS source, which implements a number of improvements to increase the interaction repetition rate, as well as the efficiency and stability of the ICS interaction itself. In this paper, we will describe these improvements, as well as plans for future experiments.

 
TU6PFP047 Magnet Design and Testing of a FFAG Betatron for Industrial and Security Applications 1390
 
  • S. Boucher, R.B. Agustsson, P. Frigola, A.Y. Murokh, M. Ruelas
    RadiaBeam, Marina del Rey
  • F.H. O'Shea, J.B. Rosenzweig, G. Travish
    UCLA, Los Angeles, California
 
 

The fixed-field alternating-gradient (FFAG) betatron has emerged as a viable alternative to RF linacs as a source of high-energy radiation for industrial and security applications. RadiaBeam Technologies is currently developing an FFAG betatron with a novel induction core made with modern low-loss magnetic materials. The principle challenge in the project has been the design of the magnets. In this paper, we present the current status of the project, including results of the magnet design and testing.

 
TU6PFP049 Coherent Terahertz Radiation Emitted by Sub-Picosecond Electron Bunches in a Magnetic Chicane 1391
 
  • M.P. Dunning, G. Andonian, A.M. Cook, E. Hemsing, A.Y. Murokh, S. Reiche, J.B. Rosenzweig, D. Schiller
    UCLA, Los Angeles, California
  • M. Babzien, K. Kusche, V. Yakimenko
    BNL, Upton, Long Island, New York
 
 

Coherent radiation emitted by relativistic electron bunches traversing the edge regions of dipole magnets in a chicane bunch compressor was extracted and transported for measurement, using a dedicated terahertz beamline at the Accelerator Test Facility (ATF) at Brookhaven National Laboratory (BNL). Measurements include frequency spectrum and polarization of the radiation. The measurements are compared to predictions from QUINDI, a new simulation code developed at UCLA to model radiation emitted by charged particles in bending systems. Simulations and measurements indicate that because of interference of radiation from the two magnet edges, the edge radiation is suppressed at long wavelengths. In addition to being a source of broadband terahertz radiation, the system is also used as a non-invasive, single-shot, relative bunch length diagnostic to monitor compression in the chicane.

 
WE1PBC05 Development of an Ultra-High Repetition Rate S-Band RF Gun for the SPARX Project 1815
 
  • L. Faillace, L. Palumbo
    Rome University La Sapienza, Roma
  • P. Frigola
    RadiaBeam, Marina del Rey
  • A. Fukasawa, B.D. O'Shea, J.B. Rosenzweig
    UCLA, Los Angeles, California
  • B. Spataro
    INFN/LNF, Frascati (Roma)
 
 

We present here the design, including RF modelling, cooling, and thermal stress and frequency detuning, of an S-band RF gun capable of running near 500 Hz, for application to FEL and inverse Compton scattering sources. The RF design philosophy incorporates many elements in common with the LCLS gun, but the approach to managing cooling and mechanical stress diverges significantly. We examine the new proprietary approach of RadiaBeam Technologies for fabricating copper structures with intricate internal cooling geometries. We find that this approach may enable very high repetition rate, well in excess of the nominal project this design is directed for, the SPARX FEL.


*C.Limborg et al.,“RF Design of the LCLS Gun”,LCLS Technical Note LCLS-TN-05-3
**P. Frigola et al.,“A Novel Fabrication Technique for the Production of RF Photoinjectors”,published in EPAC08.

 

slides icon

Slides

 
WE5RFP055 Helical Microbunching of a Relativistic Electron Bunch 2392
 
  • E. Hemsing, A. Marinelli, P. Musumeci, J.B. Rosenzweig, R. Tikhoplav
    UCLA, Los Angeles, California
  • A. Gover
    University of Tel-Aviv, Faculty of Engineering, Tel-Aviv
  • S. Reiche
    PSI, Villigen
 
 

The resonant harmonic interaction of an electron beam (e-beam) with an EM input field in a helical undulator is explored. The e-beam is coupled to the input radiation field at frequency harmonics through transverse gradients in the EM field, and helical micro-bunching of the e-beam is shown to occur naturally at the higher harmonics with the injection of a simple gaussian laser mode onto a cylindrically symmetric e-beam. This approach is under investigation as a method to generate a strongly pre-bunched e-beam seed for superradiant emission of light that carries orbital angular momentum in a downstream free-electron laser.

 
WE5RFP076 Status of UCLA Helical Permanent-Magnet Undulator 2441
 
  • A. Knyazik, J.B. Rosenzweig, R. Tikhoplav
    UCLA, Los Angeles, California
 
 

A helical undulator, utilizing permanent-magnet of cylindrically symmetric (Halbach) geometry has been developed at UCLA’s Neptune Facility. The initial prototype is a short 10 cm, 7 periods long helical undulator, designed to test the electron-photon coupling by observing the micro-bunching has been constructed and is currently being tested in the Neptune facility. An Open Iris-Loaded Waveguide Structure (OILS) scheme which conserves laser mode size and wave fronts throughout the undulator, is utilized to avoid Gouy phase shift caused by focusing of the drive laser. Coherent Transition Radiation and Coherent Cherenkov Radiation is used for micro-bunching diagnostic. Currently the undulator has been built, magnets were calibrated via pulsed wire method.

 
WE5RFP082 A Short Period Undulator Utilizing a Novel Material 2459
 
  • F.H. O'Shea, G. Marcus, J.B. Rosenzweig
    UCLA, Los Angeles, California
  • J. Bahrdt, A. Gaupp
    BESSY GmbH, Berlin
  • F.J. Grüner, R. Weingartner
    LMU, Garching
 
 

The fundamentals of insertion device physics demand that to have access to ever higher photon energies either the beam energy must increase or the undulator period must decrease. Recent advances in accelerator technology have increased beam energies and at the same time insertion device technology has developed creative ways of producing light of the desired energy, characteristics and quality. This paper describes the simulation work for the design of a 9 mm period in-vacuum planar undulator using a new rare-earth magnetic material.

 
WE5RFP083 Characterization of the BNL ATF Compton X-Ray Source Using K-Edge Absorbing Foils 2462
 
  • O. Williams, G. Andonian, E. Hemsing, J.B. Rosenzweig
    UCLA, Los Angeles, California
  • M. Babzien, K. Kusche, J.H. Park, I. Pogorelsky, V. Yakimenko
    BNL, Upton, Long Island, New York
 
 

It is possible to obtain spectral and angular information of inverse Compton sources using only an x-ray imaging device and various foils with K-edges in the many keV energy range. Beam parameters are chosen such that on-axis photons are above the K-edge for a given material, where absorption is strong and there is relatively zero transmission. Photons observed off-axis are red-shifted and fall below the K-edge, therefore being transmitted and creating a “donut” pattern, or "lobes" in the ideal case for a circularly or linearly polarized laser, respectively. We present simulation and experimental results of the double differential spectrum (DDS) for angle and energy of Compton photons generated at the BNL ATF.

 
WE6RFP095 Observation of Narrow-Band Terahertz Coherent Cherenkov Radiation from a Dielectric Structure 3019
 
  • A.M. Cook, J.B. Rosenzweig, R. Tikhoplav, S. Tochitsky, G. Travish, O. Williams
    UCLA, Los Angeles, California
 
 

Funding: Work supported by DOE.


We report experimental observation of narrow-bandwidth pulses of coherent Cherenkov radiation produced when a sub-picosecond electron bunch travels along the axis of a hollow circular cylindrical dielectric-loaded waveguide. For an appropriate choice of dielectric structure properties and driving electron beam parameters, the device operates in a single-mode regime, producing radiation in the THz range. We present measurements showing the emission of a narrowly-peaked spectrum from a fused silica tube 1 centimeter long with sub-millimeter transverse dimensions. We discuss the agreement of this data with theoretical and computational predictions, as well as possibilities for future study and application.

 
MO6RFP071 Velocity Bunching Experiments at SPARC 533
 
  • M. Ferrario, D. Alesini, M. Bellaveglia, R. Boni, M. Boscolo, M. Castellano, E. Chiadroni, L. Cultrera, G. Di Pirro, L. Ficcadenti, D. Filippetto, V. Fusco, A. Gallo, G. Gatti, C. Marrelli, M. Migliorati, A. Mostacci, E. Pace, L. Palumbo, B. Spataro, C. Vaccarezza, C. Vicario
    INFN/LNF, Frascati (Roma)
  • G. Andonian, G. Marcus, J.B. Rosenzweig
    UCLA, Los Angeles, California
  • A. Bacci, V. Petrillo, A.R. Rossi, L. Serafini
    Istituto Nazionale di Fisica Nucleare, Milano
  • A. Cianchi, B. Marchetti
    INFN-Roma II, Roma
  • L. Giannessi, M. Labat, M. Quattromini, C. Ronsivalle
    ENEA C.R. Frascati, Frascati (Roma)
  • M. Rezvani Jalal
    University of Tehran, Tehran
  • M. Serluca
    INFN-Roma, Roma
 
 

One of the main goals of the SPARC high brightness photoinjector is the experimental demonstration of the emittance compensation process while compressing the beam with the velocity bunching technique, also named RF compressor. For this reason, the first two S-band travelling wave accelerating structures downstream of the RF gun are embedded in a long solenoid, in order to control the space charge induced emittace oscillations during the compression process. An RF deflecting cavity placed at the exit of the third accelerating structure allows bunch length measurements with a resolution of 50 μm. During the current SPARC run a parametric experimental study of the velocity bunching technique has been performed. The beam bunch length and projected emittance have been measured at 120 MeV as a function of the injection phase in the first linac, and for different solenoid field values. In this paper we describe the experimental layout and the results obtained thus far. Comparisons with simulations are also reported.

 
WE5PFP013 Development of Solid Freeform Fabrication (SFF) for the Production of RF Photoinjectors 2015
 
  • P. Frigola, R.B. Agustsson, S. Boucher, A.Y. Murokh
    RadiaBeam, Marina del Rey
  • H. Badakov, A. Fukasawa, P. Musumeci, J.B. Rosenzweig, G. Travish
    UCLA, Los Angeles, California
  • D. Cormier, T. Mahale
    NCSU, Raleigh, North Carolina
  • L. Faillace
    INFN/LNF, Frascati (Roma)
 
 

Electron beam based additive fabrication techniques have been successfully applied to produce a variety of complex, fully dense, metal structures. These methods, collectively known as Solid Freeform Fabrication (SFF) are now being explored for use in radio frequency (RF) structures. SFF technology may make it possible to design and produce near-netshape copper structures for the next generation of very high duty factor, high gradient RF photoinjectors. The SFF process discussed here, Arcam Electron Beam Melting (EBM), utilizes an electron beam to melt metal powder in a layer-by-layer fashion. The additive nature of the SFF process and its ability to produce fully dense parts are explored for the fabrication of internal cooling passages in RF photoinjectors. Following an initial feasibility study of the SFF process, we have fabricated a copper photocathode, suitable as a drop-in replacement for the UCLA 1.6 cell photoinjector, with internal cooling channels using SFF. Material analysis of the prototype cathode and new designs for a high duty factor photoinjector utilizing SFF technology will be presented.

 
TH3GBI02 Longitudinal Shaping of Electron Bunches with Applications to the Plasma Wakefield Accelerator 3105
 
  • R.J. England, M.J. Hogan
    SLAC, Menlo Park, California
  • J.B. Rosenzweig, G. Travish
    UCLA, Los Angeles, California
 
 

Funding: Work supported by U.S. DoE Grant No. DE-FG03-92ER40693.


The first successful attempt to generate ultrashort (1-10 picosecond) relativistic electron bunches characterized by a ramped current profile that rises linearly from head to tail and then falls sharply to zero was recently reported.* Bunches with this type of longitudinal shape may be applied to plasma-based accelerator schemes as an optimized drive beam, and to free electron lasers as a means of reducing asymmetry in microbunching due to slippage. We will review the technique used to generate these bunches, which utilizes a sextupole-corrected dogleg compressor to manipulate the longitudinal phase space of the beam, and examine its potential application in a realistic plasma wakefield accelerator scenario, the proposed FACET project at SLAC.


* R. J. England, J. B. Rosenzweig, G. Travish, Phys. Rev. Lett. 100, 214802 (2008).

 

slides icon

Slides

 
TH3PBC05 Demonstration of Efficient Electron-Radiation Interaction in a 7th Harmonic IFEL Experiment 3133
 
  • S. Tochitsky, A.M. Cook, D.J. Haberberger, C. Joshi, P. Musumeci, J.B. Rosenzweig, C. Sung, O. Williams
    UCLA, Los Angeles, California
 
 

Funding: This work was supported by DOE grants DE-FG03-92ER40727 and DE-FG03-92ER40693


Many proposals and ongoing national projects exist worldwide to build a single-pass X-ray FEL amplifier in which a high-brightness, multi-GeV electron beam has a resonant energy exchange with radiation in an undulator. Because of the practical limit on the undulator period, the electron beam energy represents one of constraints on the shortest reachable wavelength. Recently the high-order harmonic FEL/IFEL interactions were considered theoretically as a technique that would allow the reduction of the beam energy without corresponding decrease in the undulator period and the magnetic field strength. We demonstrate microbunching of the 12.3 MeV electrons in a 7th order IFEL interaction, where the seed radiation frequency is seven times higher then the fundamental frequency. Strong longitudinal modulation of the beam is inferred from the observation of the first, second and third harmonics of the seed radiation in a Coherent Transition Radiation spectrum. The level of seed power is comparable to that required for microbunching at the fundamental frequency of the ten-period-long undulator. The implications of these results for the next generation of FELs will be explored.

 

slides icon

Slides

 
TH6REP021 Multiple Scattering-Induced Mitigation of COTR Emission from Microbunched Electron Beams 3991
 
  • A.Y. Murokh
    RadiaBeam, Marina del Rey
  • E. Hemsing, J.B. Rosenzweig
    UCLA, Los Angeles, California
 
 

A Coherent Optical Transition Radiation (COTR) arising from the photo-injector electron beams spontaneous microbunching at optical frequencies has been recently observed in a number of experiments. This effect can lead to an undesirable optical background for OTR beam profile measurements at these facilities. A method to resolve this problem is proposed, based on selectively suppressing the back-scattered COTR using multiple scattering in the insertion foil. An analytical treatment of COTR dependence on the angular divergence in the radiating beam is presented, and the efficacy of the approach is illustrated with the numerical examples.

 
TH6REP049 Advanced Longitudinal Diagnostic for Single-Spike Operation at the SPARC FEL 4063
 
  • G. Marcus, G. Andonian, A. Fukasawa, P. Musumeci, S. Reiche, J.B. Rosenzweig
    UCLA, Los Angeles, California
  • M. Ferrario, L. Palumbo
    INFN/LNF, Frascati (Roma)
  • L. Giannessi
    ENEA C.R. Frascati, Frascati (Roma)
 
 

It has been suggested that an ultra-short, very low charge beam be used to drive short wavelength single-spike operation at the SPARC FEL. This paper explores the development and construction of a longitudinal diagnostic capable of completely characterizing the radiation based on the Frequency-Resolved Optical Gating (FROG) technique. In particular, this paper explores a new geometry based on a Transient-Grating (TG) nonlinear interaction and includes studies of start to end simulations for pulses at the SPARC facility using GENESIS and reconstructed using the FROG algorithm. The experimental design, construction and initial testing of the diagnostic are also discussed.

 
FR5PFP056 Beam Dynamics and RF Cavity Design of a Standing/Traveling-Wave Hybrid Photoinjector for High Brightness Beam Generation 4434
 
  • A. Fukasawa, H. Badakov, B.D. O'Shea, J.B. Rosenzweig
    UCLA, Los Angeles, California
  • D. Alesini, L. Ficcadenti, B. Spataro
    INFN/LNF, Frascati (Roma)
  • L. Palumbo
    Rome University La Sapienza, Roma
 
 

A hybrid photoinjector, which we present here, consists of a 6-cell traveling wave structure with a standard 1.6-cell RF gun attached to the one end and a 3-m long linac following for further acceleration. With this structure, no reflection observed at the input port. This enables to build the accelerator without a circulator which limits the power and the frequency of RF. From the beam dynamics point of view, the beam is produced as the normal RF guns and gets short by velocity bunching in the traveling wave section right after the gun. The peak current can reach more than 1 kA, with about 2 mm.mrad of the emittance at 20 MeV. We discuss more details about the beam dynamics as well as the RF structure.

 
FR5PFP057 Beam Dynamics Simulations of the Velocity Bunching in a Superconducting Linac 4437
 
  • A. Fukasawa, B.D. O'Shea, J.B. Rosenzweig
    UCLA, Los Angeles, California
 
 

The velocity bunching is a hot topic in normal conducting photoinjectors to generate high-brightness beams instead of magnetic chicanes in the low energy region. We apply this technique to the superconducting photoinjectors. The linac considered here consists of several 9-cell TESLA cavities, the standard 1.6-cell normal conducting RF gun is assumed, though. In the case of 1.1 nC injection, the peak current increases to 1 kA with 2.6 mm.mrad of the emittance. The peak current can be higher but the emittance becomes worse in that case, and vice versa. We discuss more details on the spot.

 
FR5RFP094 Development of a 1.5+0.5 Cell Photoinjector 4758
 
  • B.D. O'Shea, A. Fukasawa, J.T. Moody, P. Musumeci, J.B. Rosenzweig
    UCLA, Los Angeles, California
  • L. Faillace
    Rome University La Sapienza, Roma
 
 

We present the status of development of a 1.5+0.5 cell photoinjector run in the blowout regime. LANL Parmela simulation results indicate a near uniform beam of slice energy spread on the order of 500 eV when neglecting thermal effects. We examine the use of an extra half cell to control longitudinal beam growth and compare the system in development with previous 1.6 cell photoinjector designs.

 
TH4PBC05 Recent Results of the SPARC FEL Experiments 3178
 
  • M. Ferrario, D. Alesini, M. Bellaveglia, M. Benfatto, R. Boni, M. Boscolo, M. Castellano, E. Chiadroni, A. Clozza, L. Cultrera, G. Di Pirro, A. Drago, A. Esposito, L. Ficcadenti, D. Filippetto, V. Fusco, A. Gallo, G. Gatti, A. Ghigo, A. Marcelli, A. Marinelli, C. Marrelli, M. Migliorati, A. Mostacci, E. Pace, L. Palumbo, L. Pellegrino, R. Ricci, U. Rotundo, C. Sanelli, F. Sgamma, B. Spataro, S. Tomassini, C. Vaccarezza, M. Vescovi, C. Vicario
    INFN/LNF, Frascati (Roma)
  • A. Bacci, I. Boscolo, F. Broggi, F. Castelli, S. Cialdi, C. De Martinis, D. Giove, C. Maroli, V. Petrillo, A.R. Rossi, L. Serafini
    Istituto Nazionale di Fisica Nucleare, Milano
  • M. Bougeard, B. Carré, D. Garzella, M. Labat, G. Lambert, H. Merdji, P. Salières, O. Tchebakoff
    CEA, Gif-sur-Yvette
  • L. Catani, A. Cianchi, B. Marchetti
    INFN-Roma II, Roma
  • F. Ciocci, G. Dattoli, M. Del Franco, A. Dipace, A. Doria, G.P. Gallerano, L. Giannessi, E. Giovenale, G.L. Orlandi, S. Pagnutti, A. Petralia, M. Quattromini, C. Ronsivalle, E. Sabia, I.P. Spassovsky, V. Surrenti
    ENEA C.R. Frascati, Frascati (Roma)
  • M.-E. Couprie
    SOLEIL, Gif-sur-Yvette
  • M. Mattioli, M. Serluca
    INFN-Roma, Roma
  • M. Rezvani Jalal
    University of Tehran, Tehran
  • J.B. Rosenzweig
    UCLA, Los Angeles, California
 
 

The SPARC project foresees the realization of a high brightness photo-injector to produce a 150-200 MeV electron beam to drive 500 nm FEL experiments in SASE, Seeding and Single Spike configurations. The SPARC photoinjector is also the test facility for the recently approved VUV FEL project named SPARX. The second stage of the commissioning, that is currently underway, foresees a detailed analysis of the beam matching with the linac in order to confirm the theoretically prediction of emittance compensation based on the “invariant envelope” matching , the demonstration of the “velocity bunching” technique in the linac and the characterisation of the spontaneous and stimulated radiation in the SPARC undulators. In this paper we report the experimental results obtained so far. The possible future energy upgrade of the SPARC facility to produce UV radiation and its possible applications will also be discussed.

 

slides icon

Slides