Paper | Title | Page |
---|---|---|
TH4GAC03 | PAMELA Overview: Design Goals and Principles | 3142 |
|
||
Funding: EPSRC EP/E032869/1 The PAMELA (Particle Accelerator for MEdicaL Applications) project is to design an accelerator for proton and light ion therapy using non-scaling Fixed Field Alternating Gradient (FFAG) accelerators, as part of the CONFORM project, which is also constructing the EMMA electron model of a non-scaling FFAG at Daresbury. This paper presents an overview of the PAMELA design, and a discussion of the design goals and the principles used to arrive at a preliminary specification of the accelerator. |
||
|
||
MO6RFP061 | Positron Source Target Survivability Studies | 503 |
|
||
Energy deposition in the conversion targets of positron sources for future linear colliders will lead to thermal shock waves which could limit the targets' lifetimes. For the International Linear Collider baseline source, we have studied the energy deposition in a target taking the higher harmonics of the undulator radiation fully into account and applying hydrodynamical models for the resulting heat flow to determine the thermal stress in the target and to assess its survivability. |
||
WE2RAI01 | The Development of a Superconducting Undulator for the ILC Positron Source | 1839 |
|
||
The ILC positron source relies upon a ~200 m long superconducting helical undulator in order to generate the huge flux of gamma photons required. The period is only 11.5 mm but the field strength is ~1 T. The UK is building and testing a full scale 4 m long ILC cryomodule at the moment. It will be completed in 2008 and the results used to demonstrate the feasibility of the full (200 m long) system. |
||
|