A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Rochford, J.

Paper Title Page
TH4GAC03 PAMELA Overview: Design Goals and Principles 3142
 
  • K.J. Peach, J.H. Cobb, S.L. Sheehy, H. Witte, T. Yokoi
    JAI, Oxford
  • M. Aslaninejad, M.J. Easton, J. Pasternak
    Imperial College of Science and Technology, Department of Physics, London
  • R.J. Barlow, H.L. Owen, S.C. Tygier
    UMAN, Manchester
  • C.D. Beard, P.A. McIntosh, S.L. Smith, S.I. Tzenov
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • N. Bliss
    STFC/DL, Daresbury, Warrington, Cheshire
  • T.R. Edgecock, J.K. Pozimski, J. Rochford
    STFC/RAL, Chilton, Didcot, Oxon
  • R.J.L. Fenning, A. Khan
    Brunel University, Middlesex
  • M.A. Hill
    GIROB, Oxford
  • C. Johnstone
    Fermilab, Batavia
  • B. Jones, B. Vojnovic
    Gray Institute for Radiation Oncology and Biology, Oxford
  • D.J. Kelliher, S. Machida
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
  • R. Seviour
    Cockcroft Institute, Lancaster University, Lancaster
 
 

Funding: EPSRC EP/E032869/1


The PAMELA (Particle Accelerator for MEdicaL Applications) project is to design an accelerator for proton and light ion therapy using non-scaling Fixed Field Alternating Gradient (FFAG) accelerators, as part of the CONFORM project, which is also constructing the EMMA electron model of a non-scaling FFAG at Daresbury. This paper presents an overview of the PAMELA design, and a discussion of the design goals and the principles used to arrive at a preliminary specification of the accelerator.

 

slides icon

Slides

 
MO6RFP061 Positron Source Target Survivability Studies 503
 
  • S. Hesselbach, G.A. Moortgat-Pick
    Durham University, Durham
  • I.R. Bailey, L.J. Jenner
    Cockcroft Institute, Warrington, Cheshire
  • J.-L. Fernandez-Hernando
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • S. Riemann, A. Schälicke, A. Ushakov
    DESY Zeuthen, Zeuthen
  • J. Rochford
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
  • L. Zang
    The University of Liverpool, Liverpool
 
 

Energy deposition in the conversion targets of positron sources for future linear colliders will lead to thermal shock waves which could limit the targets' lifetimes. For the International Linear Collider baseline source, we have studied the energy deposition in a target taking the higher harmonics of the undulator radiation fully into account and applying hydrodynamical models for the resulting heat flow to determine the thermal stress in the target and to assess its survivability.

 
WE2RAI01 The Development of a Superconducting Undulator for the ILC Positron Source 1839
 
  • J. Rochford
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
  • I.R. Bailey
    Lancaster University, Lancaster
  • E. Baynham, T.W. Bradshaw, A.J. Brummitt, D.A. Burton, F.S. Carr, A.J. Lintern
    STFC/RAL, Chilton, Didcot, Oxon
  • J.A. Clarke, O.B. Malyshev, D.J. Scott, B.J.A. Shepherd
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • Y. Ivanyushenkov
    ANL, Argonne
  • G.A. Moortgat-Pick
    Durham University, Durham
  • N.C. Ryder
    University of Bristol, Bristol
 
 

The ILC positron source relies upon a ~200 m long superconducting helical undulator in order to generate the huge flux of gamma photons required. The period is only 11.5 mm but the field strength is ~1 T. The UK is building and testing a full scale 4 m long ILC cryomodule at the moment. It will be completed in 2008 and the results used to demonstrate the feasibility of the full (200 m long) system.

 

slides icon

Slides